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FLEXURE WITH SHEAR AND ASSOCIATED TORSION IN PRISMS
OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTIONS
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1. INTRODUCTORY SURVEY

o It is now well over eighty years ago since Barré de Saint-Venant reduced the
;5 b problem of the beam of constant cross-section under the action of a single transverse
O H load to the search for plane harmonic functions satisfying a certain condition round
e the boundary of the cross-section. The solutions due to Saint-Venant, which in-
= clude the rectangular, elliptic and circular cross-sections, are all cases in which the
E 8 cross-sections have two axes of symmetry at right angles, meeting of necessity in the

centroid of the cross-section, and along these axes the single transverse load is resolved.
These axes are principal axes, and his solution depends upon this fact. Some less useful
solutions exist for the load along one axis of certain beams of such bi-axial symmetry
of cross-section, the solutions not yet being known for the load along the perpendicular
axis.
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162 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

In the case of cross-sections with a single axis of symmetry, when the forces across the
end-section reduce to a load with a resolute transverse to the axis of symmetry, the
solution of the flexure problem is known (Love 1927, p. 332) to involve also the solution
of the Saint-Venant torsion problem of the cross-section. According to Young,
Elderton and Pearson (1918, pp. 5, 58), Saint-Venant himself failed to realize this.
The first exact solutions* for cross-sections of uni-axial symmetry involving this
associated torsion were given by them in 1918 for complete and curtate circular sectors.
These include a great variety of cross-sections, from some not far removed from the
rectangular cross-section to the incomplete circular annulus or “gutter” section, the
split cylindrical tube, and the circular cross-section with complete radial slit. The
solution for the case with the load along the axis of symmetry, which involves no
associated torsion, was later given by Seegar and Pearson (1920). There appears,
unhappily, to be a complete neglect of the first of these works. Both Love (1927,
p. 340) and Timoshenko (1934, p. 301), in referring to the case of flexure with as-
sociated torsion, unfortunately mention the work of Seegar and Pearson and do
not give the proper reference, which should be to Young, Elderton and Pearson’s
paper. In spite of certain shortcomings of this paper to which the writer will
in due course draw attention, the consequent apparent neglect of their work is ill-
deserved, and the writer hopes that his own check upon and correction of some of their
results will help to bring these earlier solutions for some very interesting cross-sections
to more general notice. Their work was a war-time research bearing upon the torsion
of aeroplane propellers, the Saint-Venant flexure problem being an admittedly
crude approximation to the real problem of continuous loading involved.

One problem in which they went to considerable pains to proceed to a numerical
conclusion was that for the bluff stream-line cross-section having as its boundary one
loop of the lemniscate of Bernoulli, of polar equation 72 = 2¢2 cos 26, for the case with
the load transverse to the axis of symmetry. Here they found that their associated
torsion was in the opposite sense to that for their solution for the right-angled circular
sector having the same axis of symmetry and with its vertex at the origin 7 = 0. This
transition of sign in their associated torsion, accompanying what appeared to be a not
very marked change in the character of the cross-section, seemed somewhat doubtful
to the writer, as indeed it did to the authors of the solution (Young, Elderton and
Pearson 1918, p. 68), who published it “in the hope that a fresher eye may discover
our slip, or verify the analysis, or again find other sections of negative torsion’’. Their
solution for the lemniscate loop is now shown by the writer to be incorrect, the mistake
of analysis located, a solution found by a different method and completed by finding
the solution for the load along the axis of symmetry. Incidentally, the torsion problem
for this cross-section is needed and a previous solution for the equivalent hydrodynamical
problem, due to Basset (1884, p. 245), is also shown to be incorrect. Further, on tracing

* Griffith and Taylor (1921, p. 950; see also § 15) discuss approximate solutions for thin cross-
sections, which include the split cylindrical tube.
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 163

the total twisting effect of the load upon the circular cross-sections, the writer disagrees
with Young, Elderton and Pearson’s interpretation of some of their results, in particular
disliking their introduction of a so-called ““total torsion”’, which is in fact not a pure
torsion at all, and, further, has no meaning apart from uni-axial cross-sections.

In recent years further solutions for cross-sections of uni-axial symmetry have been
published, one or two while this paper was in course of preparation. Shepherd
(1932) has obtained the solution for a circular cross-section with a radial slit of any
depth, and later (Shepherd 1936) the solution for the cardioid cross-section. In this
latter paper he corrects an error of sign for the associated torsion in his earlier paper,
but here also the writer finds some misinterpretation of otherwise correct results. It
is worth mentioning that among Young, Elderton and Pearson’s many results will
be found the solution for the complete circular cross-section with a radial slit from
centre to circumference, which links up with Shepherd’s result.

Timoshenko (1922, p. 406) gives the solution when the cross-section is an isosceles
triangle for particular values of Poisson’s ratio, and also a simply obtained solution
(Timoshenko 1934, p. 300) for a beam of semi-circular cross-section. This latter is
incorrectly related to the external force system. He finds an incorrect position for the
“flexural centre”, i.e. the point on the axis of symmetry to which the load must be
shifted from the centroid if the associated flexural torsion is omitted. This will be
defined in § 2.

No account of recent work on Saint-Venant’s flexure problem would be com-
plete which did not pay tribute also to the work of Seth (1933) who first published a
solution for the cross-section which is an isosceles right-angled triangle. This, in the
writer’s opinion, is incomplete in so far as he does not relate all the constants of his
solution to the external force system; he does not in fact evaluate the associated flexural
torsion.

The revision, completion, correction and correlation of the conflicting results made
apparent by collecting these solutions together has been very much simplified by the
writer’s discovery that Saint-Venant’s flexure problem is reducible to boundary
problems of the same canonical simplicity as the torsion problem, involving six “‘ canoni-
cal flexure functions” of which one is the torsion function for the cross-section.

Young, Elderton and Pearson remark (1918, p. 3) that ‘““the problem of complete
asymmetry still awaits investigation”. With the aid of the six canonical functions the
writer has carried out such a general investigation in the present paper, providing a
systematic method of relating the necessary constants of a flexure solution to the
external force system, expressing the associated flexural twist and the co-ordinates
of the centre of flexure in terms of six ““moment integrals’’ analogous to the torsion
moment. Further, these have been worked out in a definite case for a particular
asymmetric cross-section, namely, one of the two halves of the lemniscate loop pre-
viously mentioned, into which it is divided by its axis of symmetry.

21-2
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164 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

2. STATEMENT OF THE PROBLEM

The generators of a cylinder of constant cross-section .S are parallel to the z-axis,
and the curved surface of the cylinder is free from surface traction. The line of centroids
of the cross-sections in the unstrained state is taken as the z-axis, and the x- and y-axes
are for the present chosen to be the principal axes of the cross-section at the centroid G
of the section z = 0. One end of the cylinder, z = /, is subject to forces which reduce
to a single force transverse to the z-axis through the load-point L(f”,¢’) of this end-
section. We shall suppose this force resolved as (W, W’) parallel to these x- and y-axes
(see fig. 1). The resultant of the stresses across the section z = ¢, 0<<¢ </, acting upon
the material for which z< ¢, must then be equivalent to an equal force (W, W’) at the
load-point of this cross-section, together with a certain total bending moment about
an axis transverse to the z-axis.

Fic. 1. Scheme of co-ordinate axes in relation to the elastic cylinder, and scheme
of loading at the free end cross-section of the cylinder.

Note on use of elastic constants

We shall use the customary E for Young’s modulus, and follow Karl Pearson
in using 7 for Poisson’s ratio and L. N. G. Filon in using ¢ for the modified Poisson’s
ratio of generalized plane stress, where (1—¢) (1+47) = 1, according as the results
considered happen to be linear in 5 or o respectively. (Although 7 is also used in
certain sections of this work as a curvilinear co-ordinate, there will be found no reason-
able likelihood of confusion arising from the two different uses of the same symbol.)
The rigidity is written as .

Saint-Venant’s solution of the flexure problem

The solution for the stresses in this problem can be written

Pq :ﬁl+ﬁ2) (p>q = x,y,z), (2'1)
where X =yy = xy = 0, (2-2)
and zz, = (W) x(l—2z),

— ) d

2, = (WD [ st =ty (2 —), (24
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 165

721 = WIED (B 1-2), (25)
2, = (W) y(1-2), (20
2, = WD) (B ), (27)
Poo = (BT (0~ n(a2 =) ), (29)

in which I and I are the principal second moments of the cross-section about the
principal axes parallel to y and x respectively at 0; ¢, ¢’, §; are real plane harmonic
functions satisfying the boundary conditions

= L) (29)
Q?_ — m{y?—n(x2—y?)}, (2-10)
% = ly—mx, ‘ (211)

in which n denotes the outward drawn normal to the boundary of direction cosines
({, m, 0). In the case of ¢, its conjugate function ¥, satisfies the boundary condition

V5 = $(x2+y?) +const., (2-12)

and we find it convenient usually to find ¥; and deduce ¢, if needed. The constants
7 and 7’ in (2-4), (2+5), (2:7), (2-8) are determined from the fact that, since the stresses
across a section z = ¢, (0<<¢</), acting upon the material for which z<¢, must be
equivalent to the load (W, W’) localized at ( f”, g’), in particular their moments about
the z-axis must be the same, whence

[, 92 as =~ wg, (213)

[e2s—ys) s =Wy, (214)

the integrals being taken over the cross-section .S.

The flexure functions ¢, ¢’ are not quite of the classical form of Saint-Venant’s
flexure functions y, y’, as given in Love (1927, pp. 332, 343), but are closely related,
since

$+ig" = —(x+oy') + (L+4) (x+9)%/3. (2-15)
The solution we are using is the form to which one is led naturally by the semi-inverse
method, assuming (2-2), (2-3) and (2-6), and solving for the remaining stresses from
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166 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

the body-stress equations in the statical case under no body forces, and the consistency
equations of type

—~ 0%
(1+77) Vzﬁq—f‘m (xx+yy+zz) = 0, (paq =X%Y, Z)' (2'16)

The stresses involving 7 and 7’ are torsional stresses, and equations (2:13) and (2-14)
give the amounts 7 and 7’ of these torsional solutions associated with the load at the
load-point L( f’, g'). The rotation of an element of area in the plane of cross-section is

(,,._1(_‘?2_@’_‘)
- 2\0x  dy)’

and from the stress-strain relations for the shears ¥z, 4z we have

do 1 (0y’2 m>

0z 2u\ox  dy
o Why ., Wiy .
or 9z (7~Ejy)+(7 +‘FITx); (2 17)

using (2-4), (2'5), (2-7) and (2-8). This will be taken as a measure of the local twist at
a point (x, y) of a cross-section, and can be made to take any value by a suitable choice
of the load-point. The local twist at the centroid of the cross-section is 7+7', and it
is clear that this is also the mean value of the local twist taken across the cross-section.

Now by Saint-Venant’s problem of flexure we usually understand the case in
which the load-point L is taken at the centroid of the cross-section, i.e. f' = g" = 0.
The corresponding values 7,, 7, given by (2-13), (2-14) will then be referred to as ““the
associated twists” simply. For a cross-section of uni-axial symmetry one of these is
zero, and for a cross-section of bi-axial symmetry both vanish.

An alternative view of the problem of flexure is to take both 7 and 7’ zero in equations
(2-4), (2'5), (2-7) and (2-8), and find the corresponding load-point (fy, go) from
(2-13) and (2-14). This point, i.e. the point of the cross-section which is the load-point
when the local twist vanishes at the centroid of the section, or, what is the same thing,
the load-point when the mean value of the local twists taken over the cross-section is
zero, is called the ““centre of flexure’ or ““flexural centre”. It will lie on the axis of
symmetry of a uni-axial cross-section and coincides with the centroid of a cross-section
of bi-axial symmetry.

It is clear that the solution of the problem when the load-point is at the centroid
corresponds to the superposition upon the solution for the load-point at the centre
of flexure of a Saint-Venant torsion solution for the cross-section with a twist of
amount 7,-+7;. A solution of the flexure problem for a cross-section will not be regarded
as complete unless either the associated twists 7,, 7, or the co-ordinates of the centre of
flexure (f;, g5) have been determined. Similarly a torsion problem cannot be regarded
as complete until the torsion moment has been determined.
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 167

In the examples considered in the present paper we find both the associated twists
and the position of the flexural centre, and give no detailed discussion of the stresses
across the cross-sections; we concentrate upon relating completely the external force
system applied to the free end of the cylinder with the constants of the solution, so
that we have a more or less complete picture of the general action of a load applied at
any point of the free end in twisting the cross-section at this end relative to that at the
fixed end or “root” of the cylinder.

3. SUBDIVISION OF THE FLEXURE PROBLEM

The boundary conditions (2:9), (2-10) for ¢ and ¢’ can be combined in complex
form as

J . : -
oy, (D+18") = (1) (I +imy?) + iy (ily* — mx®). (3:1)
_O0x _dy dy  ox
Now l_(?_n—(?s’ =T o
so that Ix2+1my? = x2 gx—l—zy gz ; (x3+1y3)/3
and ily? mxz—xzz +iy? gs g (x3+1y3)/3,
so that (3-1) can be written
0 - J , 5, .3 L0 .
5 B+i8) = (Ltn) 2 (88 4ig®)[3in o (684 ig%) 3. (32
Hence if we write ¢+1p" = (1-+9) (xo+ixe) +n(Po+184), (3-3)
where y,, X0, §0» $o are real plane harmonic functions satisfying boundary conditions
| i, ., .
;972{X0+2X0“ (x*+y*)[3} = 0, (3-4)
9 (G iby) — o (5+iy?)3 - (3:5)

then we have subdivided the flexure problem into separate problems, the boundary
conditions for which are free of elastic constants and possess the same canonical
simplicity of form as the boundary condition for the torsion function ¢,.

Further, if ¢, ¥, are the functions conjugate to ¢, ¢,, so that

d om0 C
an (Bo+100) = s (Yot+190),
then these satisfy the boundary conditions

Yo+ 1o— (x3+1y3) /3 = const. (3-6)
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168 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

This replacement of the usual flexure functions y and y’ by the four functions ¥, g,
Po> g (or ¥y, ¥g), has thus resulted in a considerably neater statement of the problem
as a boundary problem than the classical one, besides separating the problem in a
manner which allows the dependence of the results upon Poisson’s ratio 7 to be
obtained very readily, a desirable feature in an elastic problem of interest to the
engineer.

4. CHANGE OF ORIGIN IN TORSION AND FLEXURE PROBLEMS

The next step is to remove the restriction hitherto imposed upon the axes of being
the principal axes at the centroid of the cross-section. This is mathematically necessary,
since the principal axes at the centroid are, in general, only the most convenient axes
to take from the point of view of analytical description of the boundary when each is
an axis of symmetry of the cross-section.

Y

F1c. 2. Scheme for change of axes.

Let Gx', Gy’ be the original axes of a cross-section (i.e. principal axes at the centroid
G), and put x" 4’ = {. Let Ox, Oy be any other rectangular axes (no longer neces-
sarily principal axes), and let the angles which Gx’, Gy’ make with Ox, Oy respectively
be a (see fig. 2). We put x+1y = £, with ¢ = ¢, for the point & ({=0), and { = {, for the
point O (¢=0), where

ty=h+ik, —{y=h+ik'. (4-1)

The equations of transformation from #, y to x’, y” are given in complex form as
L= (t—ty) e, (4-2)
and we have Wik = (h+4k) e (4-3)

Now if ¥, denotes the torsion function in terms of co-ordinates referred to Gx’, Gy’,
then the boundary condition (2-12) can be written

¥, = ${{+ const., (4-4)
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 169

where { denotes x' —dy’, and generally throughout this paper a bar over a quantity
is to denote the quantity obtained by changing i to —i.
In virtue of (4-2), (4-4) can be written

¥, = 4t —Lit,— &t -+ const.,
so that if we write Vo = s —hx—ky, | (4:5)
then ¥ is a real plane harmonic function and satisfies the boundary condition
V5 = i+ const., (4-6)

which is of precisely the same form (4-4) satisfied by ¥, in the original co-ordinates.

We derive easily Dy = b+ hy —kx, (4-7)
and, writing w=g¢-+1y,
Do+ 1Yy = wy—ilyt. (4-8)

These give the torsion functions for the origin G in terms of the torsion functions for
the origin O, and the form of the torsion problem is very little altered by change of
axes as is well known.

Now consider the flexure problem in the same manner. We have, using (4-2),

(23 +iy"%) /3 = ((C+[3) /4
— (T 1y) (¢ — 1) 2|4 €4 (E—15)3/12
== Lo i {32 O 11131 — Ty (t —1y) 2} 4 €3 (1—1,) 3 /12, (4+9)
and if we write
Xo+Xo = €[ Xy F+ixa—boxs +{E—1,(t—1,) 2 —13/3}/4] -+ e3*(1—1y)3/12,  (4-10)

where y,, x5, X3 are real plane harmonic functions, then

Xo+ixo— (7 1) [3 = ey, +ixy — (W2 +T[3) [4 — by (s — $10)}
= e {ptixy— () B—Lxs— 2P +yH)]) (411)

so that the boundary condition (3-4) is satisfied if the functions yx,, x,, x5 satisfy the
boundary conditions

9 Gu—3) — o, (w12)
a 3

9 —9°13) =0, (4:13)
by = o. (414)

Vor. CCXXXVII. A. 22
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170 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

Similarly we may take real plane harmonic functions ¥, ¥, 5 such that
Vot io = e[+ — o H{H—To(t— 1) —P[3}/4] +6¥*(1—1,)°[12,  (4-15)
whence
Vot io— (¥ +iy?)[3 = e+ — (8 + ) [B— L[ — 5 (4> +97)]},  (416)

and the boundary condition (3-6) is satisfied if ¢, ¥,, ¥4 satisfy the separate boundary
conditions

¥, —x3/3 = const., 4-17
1

Y,—4*/3 — const., (4-18)
Vs —%(x24y?) = const. (4-19)

Also, if ¢, ¥, ¥ are the harmonic conjugates of functions ¢,, ¢,, @3, then, since

op .0y 0p__ .0¢

ot TR TR TH
we find

Bo-H iy = e[ by +igy— by by —U{HG + 1o (1 — 1) — P [3}H/4] —ie¥*(1—1y)*[12.  (4:20)
So the new flexure functions y;, X,, ¥1, ¥, satisfy boundary conditions of precisely the
same form as y,, X0, Vo> Vo, there being now no restriction upon the co-ordinate axes.
These functions solve the problem when the axes are merely changed by rotation; if
the origin is shifted from the centroid, then we need the solutions for the two further
functions y,, ¥5, of which the latter is clearly the torsion function for the cross-section.
The boundary conditions (4:12), (4-13), (4-14), (4-17), (4-18), (4-19) are remarkably
simple and symmetrical in form. We shall call the six functions the six “canonical
flexure functions”, and the six corresponding boundary conditions referred to above
will be termed the “canonical boundary conditions™.

Collecting up our solutions, equation (3:3) can now be written

¢+ig" = (L4n) {7, +ixy— Lo xs + {5 —To(t —£)*— B[3}/4] +-€¥*(1—1y) 3 [12}
+ e [i(B) iy — Ly Bs) G+ To(t— 1)) —B[3}[4] +-e3*(1—1p)3 (12} (4-21)

5. THE STRESSES

~ Next we consider the stresses in terms of the new co-ordinates and the canonical
flexure functions. If¥z’, 72’ are the shears across an element of the cross-section parallel
to the principal axes Gx’, Gy’ at the centroid, and #z, 7z are the shears parallel to the

new axes, we have
82,412, = ¢(%21+z)- (5:1)

J d (9 Ja  .d

Ox ’+Zay_ 0{’ (3’x+ dy

D

Also we find (5-2)

Q)
Nl
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IN PRISMS OF UNI-AXITIAL AND ASYMMETRIG CROSS-SECTION 171

Hence from (2-4), (2-5) we have

(BIW) (21 -+i721) = 25— (1+0) (G+Da—n(E—0ja-+ (BIW) (252 +it),

(5:3)
and, using (4-2), this substituted into (5-1) gives
(EIWW) (@ +if2) — 2% (Elr/W) [2__;;+ )]
— (1 +n) [(E—15)2 e +-2(t— 1) (I—1,) ¢+ (I—1,) ] /4
—nl(E—to)? e —2(t— 1) (T—1p) €4 (1 —1p)? %] /4. (5-4)

But 2% {8+t + (-8}

hence from (4-21) we have
0¢ —io __ iow 3ia
= (1) {2 5 Teosa +sin gy — ko] + [(B— %) -~ 21— 1) o (1 1) e8]

1 (25 [sin ag, —cosagy + |+ [(B—) e+ 2, (1—1) &+ (116 ).

(55)
Also By = by — iyt +ity 1.

Hence (5-4) becomes
(ELuW) (7% +i52) = (EIr|W) (23—%34-1'15)
+(1 +77){2;%[cos ax,+sinay,—h'xs] +[(2tt, — 2 —12) e~ — 2¢(1 —1,) e"“]/4}

—]—7]{2%[sino¢¢l oSyt K Bs] - [(2tty— 12— ) w4 26(1—1,) 6%] /4},

(6-6)
which separates to give

(EIluW) 5z, = (1+7) {cosoc((?; )+Slna%—h’(?§: )}

—|—77{s1noc 99, cosa(%—f)—i—k’(%wy)}—i—(EIT/W)(%%"—y), (5:7)

= d . (0 9
(ELluW) gz, = (1+7) {cosoc-axj—l—sma(%;_yz) P ((9}2 y)}

+7 {sin oc(a(% +x2) —cos a% +k,(6£y3 —I—x)} + (EIt|W) (%—I—x) . (58)

22-2
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172 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

Proceeding similarly for ¥z,, yz,, or replacing I, W, 7, o by I’y W', 7" and a-+m/2
respectively in (5-7), (5-8), we have

’ Nz, = — M o e X3
(BT [uW') kz, = (1%—77){ smoc((9 —X )Jrcosocax —k (55& Mx)}

+7 {cos o jél -sin 0‘( (;i yz) gh,(%% N y)}

L (EIT W (%ﬂt y), (5-9)

(EL'|uW') yz, = (1 +7) {——Slnoa%zcy—1 +cos oc(?;z y2) ——k/(%%(;_y)}
o e (¥,
"H]{COSoc(Fyf1 +x2)—|~smocﬁ ((?y )}
1t ' a¢ )
+ (EIT/W)(»G—;er). (510)
We have also (IIW) zz, +i(I'|W') 22, = (I—2) (t—1,) e, (5-11)

all other stresses vanishing.

6. THE DISPLACEMENTS

We give the displacements here (apart from a possible rigid body displacement),
mainly for the sake of completeness, although some use will be made of these results
in §§11 and 12. They can be obtained by the usual method of integration via the
stress-strain relations, or deduced from the known Saint-Venant solution (Love
1927, Pp- 332, 343) in terms of the classical flexure functions y, x’, since

Xt =—(g4") +(14-4y) &f3. (6-1)
Writing the displacement vector D(u, v, w) in the form
= (WIEI)D,+ (W'|EL')Dy+ (1+41") Ds, (6-2)
we find (uy+1ivy) +1(uy+1vy) = p(l—z) e *(t—1,)?, (6-3)
(uy +10y) —i(uy+10y) = é*(1z2—23/3), (6-4)
Wy wy = — (lz—%2%) e~ (t— 1)

(1) e [ iy — foa] — [t —80)+ (B3 —103)]/4)
e iy —toha] (Ut~ 1) — (3~ 13)1/4), (6:5)
U0y = 1z(t—1,), _ (6-6)
Wy = Go+hy —kx. (6:7)
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 173
Note that, if the form in terms of x and y is required in (6-5), we have

[1(1—10)*+ (B[3—U§) ][4 = (¥*+9°) [3— 38, (4" +97), (6:8)
[((t—1)*— (P[3—U§) ][4 = (#* +°) [6 + (xy +1xy) [2— 3ty (4 +y?) — 585 (x—1y).  (6°9)

7. THE ASSOCIATED FLEXURAL TORSIONS

We now develop formulae for determining the amounts of the “associated flexural
torsion’’ solutions, i.e. the associated twists 7, 7" defined in § 2, and given by equations
(2-13), (2-14) with f’, g’ both zero. These we can obtain by proceeding directly,
equating the sum of moments about Oz of the stresses across the cross-section to the
moment of (W, W), localized at the centroid, about Oz and separati}lg the terms
in W, 7 (which vanish together) and W', 7', leading to

[(a72, —y2,) dS = — W, (71)

j (72, —y2,) dS — WK (7-2)

Multiply (7-1) by (EI/uW) and substitute for xz, and 7z, from (5-7) and (5-8), then we
have
(1+47) [cosa L, +sinaL,—h'L]
+y[sina M, —cosa My+k'M,] -+ (Elr|W) = — (EIK' |u), (7-3)

where L, = L+ |x%ydS, M,= M+ |x3dS,
L,— Lg—fxyws, M, — M§~|—fy3 ds, (7-4)
L,—L M, = M+ (249 dS,
b (e O _
and L —J‘(x@——yﬂ) as, (r=1,2,3), - (75)
o ((.9¢, 09, _ ,
M. -—f(xgy——— —5;)019, (r—1,2,3). (7-6)

Substitute £ = 2u(1+7) in the right-hand side of (7-3), and the equation gives, using
(4-3),
—T1(EIM; /W) = cosa[(1+n) (L, —hLs+ 2kI) —n(M,—kM,)]

+sinal (1+7) (Ly—kLy—2hI) + 5 (M, —hiM)], (7-7)

which is the required formula for the associated twist 7.
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174 A. G. STEVENSON ON FLEXURE WITH SHEAR AND TORSION
In similar fashion (7-2) leads to
—7 (EI'My/W') = —sina| (149) (L, —hLy+2k1") — (M, —kM;)]
+cosal (14+7) (Ly—kLy—2hI") +n (M, — hM;)] (7-8)

for the associated twist 7’

The twists are accordingly given in terms of six moment integrals defined by equations
(7-4), (7-5), (7-6). Of these we are familiar with A, since urM; is the torsion moment
of the cross-section. |

i 8. THE TORSION AND FLEXURE MOMENT INTEGRALS

In this section we develop alternative expressions for the “moment integrals”
L,, M, defined by equations (7-5), (7-6), which will be of considerable assistance in
later sections.

Throughout the paper we shall use complex functions v, £ defined by

0, = ¢, +1,, (8-1)
0, = X+, (8-2)

where y, and x¥ are conjugate functions, and » = 1, 2 or 3. From this point onwards
we shall use the more familiar notation z = x-+1y replacing the previous notation ¢
for this complex variable, which we can very well do without causing any confusion,
as there is very little, if any, reference to the z co-ordinates of points of the elastic
cylinder hereafter.

. . . dQ
Consider the integral |iz s —-rdS, taken over the cross-section. It is readily shown

that
S e & A
so that L/ is the real part of the integral, from (7-5), or
1= R[iz%% as, (8-3)
and M, =R zz‘fl,—w’dS (8-4)

Again since ¢,, ¢, are conjugate functions

_ f ( W, 5’%)
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IN PRISMS OF UNI-AXTAL AND ASYMMETRIC CROSS-SECTION 175

which by Green’s theorem, since also V2, = 0, becomes

My = 199 Pras

n

the line integral being taken round the boundary of the cross-section.

4, _ Y,

But 5}“ = ——%‘,
hence finally we have M, =f%(x2+ y?) %%f ds, (8-5)
and similarly L — f L(x24g2) %—?i ds. (8-6)

Again these latter are equivalent to

M. = R|}zzdo,, (8-7)

L =R f 122d0,. (8-8)
When 7 = 3, from (8:7) and the boundary condition (4:19) peculiar to ¥, we have

M; = [, g, (89)

Usually it will be found a great help to use one formula for a portion of the moment
integral and another for the remainder.

9. THE CENTRE OF FLEXURE

The flexural centre is defined in § 2 as the load-point ( f,, g,) when the local torsional
twist at the centroid of the cross-section is zero, or, what amounts to the same thing, as
the load-point when the mean torsion taken over the cross-section is zero. To find the
co-ordinates of the centre of flexure we set 7, 7" zero in the stresses ¥z, 7z and then
since the sum of the moments of the stresses across the cross-section about Oz is equi-
valent to the moment about Oz of the load (W, W’) localized at (f;, g,), we have

f(xg,‘zl——y;’&l)dS:——W(gocosoc——fosinoc), (9:1)

f (72— yi2,) dS = W'(f cos o+ g,sin a). (9-2)
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176 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION
Multiply (9-1) by (EI/uW), substitute for ¥z, and yz, from (5-7) and (5-8) after putting
7 = 0, and substitute £ = 24(1+7) in the right-hand side, then
(14-7) [cosa L, +sin aL,—h Ly +p[sin a M, —cos a M, + k' M,]
= — 2I(1+7) (gycosa—f,sina)
or 21( fysina—g,cosa) = cosal (L —hL;) —a(M,—kM,)]
+sina (Ly—kLy) + o (M, — hM;)], (9-3)
where ¢ = 7/(1+7) is the modified Poisson’s ratio of generalized plane stress, and pro-
ceeding similarly from (9-2) we have also
2I'(fycosa+gysina) = —sina[ (L, —hLs) — (M, —kM,)]
“cosal (Ly—kLy) -+ o (M, —hM,)]. (9-4)
Solving (9-3) and (9-4) for f,, g,, we have

Jo = bol(Ly—kLg) -+ 0 (M, —hMy) | —ho[ (L, —hlg) — 0 (My— kM), (9-5)

8o = hol (Ly—KLy) -+ o (M, —hMy) | —ag[ (L, —hily) — o (My— kM) ], (9-6)

where ay = [(cos?a) /I + (sin?a)/I']/2, ' (97)
by = [(sin?a)/I+- (cos?a)/I']/2, (9-8)

hy = sinacosa(1/]"—1/I)/2. (9-9)

The introduction of ¢ as the elastic constant here is an advantage, since if the position
of the flexural centre is known for the same cross-section for two different materials,
by experiment for example, then its position for the same cross-section in any other
material can be deduced by a simple linear interpolation. We note that since 0<<y<C§,
we have 0<<o<<}. Now equations (9-5) and (9-6) could be written in the form

Jo=S1+30(fa—11), (9-10)
g =81 +30(8,—8)s ~(911)

where f, f5, g, g, are constants for the cross-section and the chosen axes, and are
independent of elastic constants; hence, whatever the elastic constant ¢, the centre of
flexure lies between the points (f}, g;), (/2 g») and on the straight line joining them.
Before the formulae (9-5) and (9-6) can be employed, the principal moments Z, I’
at the centroid (%, k) and the angle @ which the principal axes make with the co-ordinate
axes must be determined. To this end let , I, F be the second moments about the axes
Ox, Oy respectively and the product moment about these axes. These will generally
be the simplest moments to compute since the axes Ox, Oy will have been chosen for
mathematical reasons of easy analytical description of the boundary of the cross-
section. The corresponding quantities 4, B, H for parallel axes at the centroid will then
be given by
A=1-—Sk, B=1-—-Sh H=F—-=Sh, (9-12)
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 177
where S is the area of the cross-section. We then find
tan 2¢ = 2H/(B—A4), (9-13)
I' = Acos?a—2Hsina cosa -+ Bsin?a«,

I = Asin?a-++2Hsinacosa+ B cos?a,

whence 2I' = A+B—C, 2I=A4+B+C, (9-14)
2cos?a = (B4+C—4)/C, 2sin’a = (A—B+C)/C, (9-15)
where C?=4H?+ (B—A)%. (9-16)

Substituting these results in (9-7), (9-8) and (9-9), we have
agl]A = by|B = hy/H = 1/2(AB — H?). (9:17)

10. THE CENTRE OF TWIST

The flexural centre gains an added importance from its practical relation to the
“centre of twist” for the cross-section. If a twisting couple only is applied to the
free end of the elastic cylinder, the point of the cross-section which suffers no displace-
ment in the plane of cross-section is called the ““centre of twist”’. The exact determina-
tion of this point depends on the conditions of fixity at the root. If the root is held
completely rigid, however, it can be shown from the Rayleigh-Betti reciprocal theorem
that the centre of twist is identical with the centre of flexure.

Duncan, Ellis and Scruton (1933)* have demonstrated, both theoretically and
by experiment, that, if the cylinder is long and the root supports are *“quasi-rigid”,
the two points cannot be very far from one another. (Some remarks bearing on their
experiments will be found in § 12.) These ideas have found some use in the discussion
of the sustained vibrations in aeroplane wings which characterize the dangerous
phenomenon of ““ wing-flutter”’.

11. THE SIMPLIFICATIONS OF UNI-AXIAL SYMMETRY

When the cross-section has an axis of symmetry this is a principal axis at all points
along it, and in particular at the centroid of the cross-section, which must lie upon
the axis of symmetry. The centroid is only rarely the most convenient origin of co-
ordinates to adopt, as in such exceptional cases as the circular cross-section with a
radial crack, or the equilateral triangular cross-section, soluble in a simple manner
in the case when 7 = }.

With the x-axis as the axis of symmetry, we have £ =0, « = 0, £’ = 0, &’ =, and

* See also Southwell (1936, p. 29). Southwell omits the third author in citing this paper.

VoL, CCXXXVII. A. 23
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178 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

the flexural displacements are given in terms of the co-ordinates x, 7, z by the equations
n = u;+u, etc., where

(ELW) uy = 3(l—2) {(x— B>y} + 12222, (111)

(EIW) v, = (1 2) y(x—b), (112)

(EIW) w, = (147) (g — /3 hxs— 3 (2 12)]} (113)
{26 a2 h(2 ) 2— 2} (I §22) (x ),

(EL W) uy =n(l—2) y(x—h)— (1" EL'|W') yz, (11-4)

(EI'|W") v, = —3q(l—2) {(x—h)2—y2 1-122/2— 23/6 + (7' EI'|W') (x—h) z, (11-5)

(ELIW) w0, = (119) (1 %/6) + 1 {y — by 1 4161 a%y/2 - Iy)2) (116)

+(TEL W) (Ps+hy) — (lz—32%)y.

The stresses are given by

— J d d
(BIja) 2, = (1) (R a2 o)) -2y (117
Ix QZ(;;_ ) g, .
(E1) 720 = (1) {150 =) =0 (11-8)
IIW) zz; = — (I—2z) %, , (11-9)
and
, N~ a a a 1t /
(BI ) 72, = (1) G20 (T W)+ 7w (%o —y),  (1100)
: NS x> 04, 9 % } 11 TA (3¢3 )
(EI/ﬂW)yzz—(l‘l"?){ay y}ﬂ{ay +x?— ((?y +x) +(ELT W) |52+
(11-11)
I'|W')zzy = —(I—2) y. (11-12)
The associated twist 7" occurring in these equations is given by
— T (ELMyW') = (147) (Ly—2k1") +5(M, — hiMy), (11-13)
and the position of the centre of flexure by ( f;, 0), where
Jo = [Ly-+o(M,—hM,)]/21". (11-14)

It will be seen that in the case of uni-axial symmetry of cross-section the canonical
flexure functions fall into two groups, y;, x5, ¢, corresponding to the resolute W of
the load, and y,, ¢,, ¢; corresponding to the resolute W’. But for the complete flexure
problem it is still necessary to solve for the six canonical functions, so that intrinsically
the general asymmetric cross-section should present no greater difficulties than are
met with in the case of uni-axial cross-sections. The chief simplification arises in the
calculation of the associated twist 7’ and the co-ordinates of the centre of flexure,
where we have only three moment integrals to compute, one of which is a multiple of
the torsion moment for the cross-section.
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12. REMARKS ON THE MEASUREMENT OF TWIST BY EXPERIMENT

Duncan, Ellis and Scruton’s determination (1933, p. 213) of the position of
the centre of flexure rests on the fact that “if a constant flexural load in a
direction at right angles to the axis of symmetry be applied at a number of points in
the section and the twist is measured for each point of application, then the position
of the flexural centre can be found, since the twist is proportional to the distance of the
line of action of the load from that centre’’. The twist is apparently taken as propor-
tional to the difference between deflexions of the leading and trailing edges of the
uni-axial cross-sections examined. Let us examine what is really measured by such a
procedure. The deflexion v for a load W’ at the centre of flexure and any twisting
couple ur’'M,, which are together equivalent to the load W’ at some other point on
the axis of symmetry, is given by

v = (W/[ED) [~ gl —2) {(x k)2~ g2 +1222— D[6] + 7 (x— 1) 2+ yx—az -+,
(12-1)

where the terms in y, « and §’ correspond to a small rigid body displacement neces-
sitated by conditions of fixation at the root.

Now suppose that v is measured as v(x,), v(x,) at two points (¥, 0), (¥, 0) on the
axis of symmetry (x,>x;), as in Duncan, Ellis and Scruton’s experiments for
example, where the points are on the leading and trailing edges. The difference of
deflexions is v(x,) —v(x,), and the relative difference of deflexions between two cross-
sections z = z,, z, 18 [v(xz) —v(xl)]zz . If we divide this by x,—x, we get an experimental

Z1

““angle of twist” of the section z, relative to the section z,, and dividing this again by
z,—z; we should have the corresponding angle of twist per unit length.
But (12-1) gives

(o) o) |

(% —2y) (2, “‘ZS

= 7'+ (W 2ET") (3, +x,—2h), (12:2)

which is not the theoretical angle of twist 7° per unit length, unless 2 = (x, +x,)/2, i.e.
unless the points at which the deflexions are measured in the cross-sections are sym-
metrically disposed about the centroid of the cross-section.

It would appear that Duncan, Ellis and Scruton have not considered and allowed
for this difference, and there seems no valid reason for neglecting the second term in
(12-2), which arises from the ““anticlastic displacements’’ (cp. Love 1927, p. 340) as we
shall describe the terms in the displacements «, » independent of 7'. The experimental
angle of twist per unit length should be determined from the relative deflexions of
points on the axis of symmetry symmetrically disposed about the centroid of the
cross-section. If this is not feasiblé in practice it must be deduced from (12-2).

23-2
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180 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

13. REMARKS ON THE SO-CALLED ‘‘TOTAL TORSION’’

In their work on uni-axial cross-sections, Young, Elderton and Pearson (1918,
p. 19) term the quantity on the right-hand side of (12-2) the ‘““total torsion”. If their
equations (20) for the displacements are compared with our equations (11-4), (11-5),
(11-6) (remembering that they take the y-axis as the axis of symmetry), it will be found
that their associated twist 7 is equivalent to our 7' — W’'ph/EI’, and they call the term
(x,+x,) Wy/2EI" the ““anticlastic torsion”. This difference of outlook arises in the
following way:

If we define anticlastic displacements for the origin X = 0, ¥ = 0 by the mathe-

matical forms
(EI')/W"u = n(l—2) XY, (13-1)

(EI'|W') v = —n(l—2) (X2— T?) 1 1222 2%/6, (13-2)

then anticlastic displacements relative to one origin are equivalent to anticlastic
displacements relative to a second origin together with torsional and rigid body dis-
placements. Young, Elderton and Pearson take their origin on one edge of the
uni-axial section, the present writer takes the origin for which the above forms of u and v
hold at the centroid of the cross-section. Their 7 is the local twist at their origin, our 7’
is the local twist at the centroid of the cross-section.

Their definition of the associated flexural twist relating it to an origin on one edge
of the uni-axial cross-section, chosen largely for mathematical purposes, is not a very
happy one. It does not lend itself to extension to the asymmetrical case, unless the
cross-section has a definite edge, and even then from all points of view it seems much
more satisfactory to retain the definition of the associated twist which relates it to the
centroid, as we have done, since this point has the same physical significance for all
cross-sections. Similarly in the case of the anticlastic displacements, these should be
defined by the forms (13-1), (13-2) for principal axes at the centroid, or their equivalent
for other axes by transformation of co-ordinates, and the writer deprecates the use
of the word torsion at all in connexion with these anticlastic flexural displacements.

The ““total torsion” is the apparent torsion indicated by the relative twist of the line
joining the ends of the axis of symmetry of a uni-axial cross-section; the true associated
torsion is given by the relative twist indicated by the line joining points on the axis
of symmetry equidistant from the centroid.

It would appear from this analysis that Duncan, Ellis and Scruton’s experiment
determines the position of the point on the axis of symmetry of uni-axial cross-sections
at which the load must be placed if there is to be no so-called ““total torsion’’. But this
is not the flexural centre proper, and again it seems preferable to retain our definition
of the flexural centre, which is not confined to uni-axial cross-sections, rather than
modify the definition to include the misnamed “anticlastic torsion” for uni-axial
cross-sections.
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14. BOUNDARY PROBLEMS IN COMPLEX CO-ORDINATES

In boundary problems of the type of the torsion problem, where a harmonic function
is sought which takes up certain values over the boundary of the cross-section, the
following method, apparently new,* sometimes proves to be the most simple and
speedy way of discovering the function. We use conjugate complex variables

z=x+1y, Z=x—1y, (14-1)

it being unlikely that this use of z will be confused in the sections of the paper which
follow with the distance of a cross-section from the root end.
We have to determine the form of a complex function w, or real conjugate functions

¢, ¥ given by
0= ¢+ = f(2), (14-2)

such that ¢ and ¢, together with their derivatives, are finite and continuous across the
cross-section bounded by the curve whose equation is

h(z,z) =0 (14-3)

and such that ¥ =19,z 2) (14-4)
on this boundary.

Since from (14-2) we have ¢ = —i[ f(z) —f(2)]/2 (14-5)

(the bar over fis to remind us that any 7 occurring in the functional form is to be
changed to —1), the problem is to discover f(z) so that on the boundary the right-hand
sides of (14-4) and (14-5) are identical. The method we adopt is to use, when possible,
the equation (14-3) of the boundary to express the right-hand side of equation (14-4)
in a form separable in z and Z, and so identify f(z) at once. If the resulting solution
for ¢ and ¢ satisfies the conditions of finiteness and continuity across the cross-section,
then it follows from well-known results in two-dimensional potential theory that the
solution is uniquely determined.
Consider in this manner the torsion problem. Here the boundary condition is

Y = zZ/2+const. (14-6)

Consider any closed boundary whose equation is
2z = X(a,z"+a,z"), (14-7)
where the a,’s are complex constants. If we write —if(z) = Za,z" so that if(Z) = Xa,z",
the resulting value of ¥ in (14-5) satisfies the boundary equation (14-6) in virtue of

(14-7), and
v =f(2) = i2a,z" (14-8)

* Since this was written, the advantages of consistently using the complex variable in similar
boundary problems of mathematical physics have been amply and more generally demonstrated by
Miss Rosa M. Morris (1937 a, b, ¢, d, 1938).
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182 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

is the solution required, provided it remains finite and continuous across the cross-
section. A large number of Salnt Venant’s simple torsion solutions can obviously
be obtained in this way.

Since x%la® +y?[b% = 1
. ~ 2a%?  1a?—b? .
can be rewritten as 7z = eré— D (z2+77),
i a?—b?
we have at once w=g aTjCZ}EZZ (14-9)

for the elliptic cross-section.
Again the equilateral triangle of height 34, the origin of co-ordinates being at the
centroid, has the boundary whose equation is

(x—h) {(x-+2k)%—3y?} = 0,
which is equivalent to 2z = 4h%[3— (z3+4-23) 6k,
so that w = —1z3/6h (14-10)
for the equilateral triangular cross-section.
That Saint-Venant did not exhaust the possibilities here is shown by a very in-
teresting example due to Weber (1921, p. 31; cf. Timoshenko 1934, p. 238). A circular

cylinder of radius @, with a notch whose boundary is a circle of radius 4, and with its
centre on the circumference of the cylinder, has for its equation

(24— ) (=) +y?—a] = O
or 2z = b?>+a(z+z) —ab?(1/z+1/z),
so that v = taz—1ab?/z, (14-11)

since negative powers can be admitted in (14-8) if the origin is outside the cross-section,
as it is in this case.

The torsion moment in these cases is then readily calculated via equations (7-4)
and (8-4).

An interesting example of the use of this method occurs when two pairs of real
conjugate harmonic functions have to be determined to satisfy the boundary con-
dition

Ui+, =g(2,2) (14-12)
round the boundary of equation (14-3). If in virtue of (14-3) it is possible to rewrite
(14-12) in the separable form .

Yty =f(2) +F(2), (14:13)
then, along the boundary, B 3
20, = f(2) +F(2) +/(2) + F(2),
and 2y, — f(z) — F(2) +-F(2) 7 (2)-
But if o= ¢+ =£1(2), 0y =gyt = f5(2)
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throughout the cross-section, we have

20, = f1(2) =/(2), 20, =f(2) —fo(2);

hence if we take ~ —ify(2) =f(2) +F(2), fylz) =f(z)—F(2),

so that necessarily  if,(Z) =f(2) +F(Z), [,(Z) =f(Z)—F(Z),

then the solutions 0, = ¢+, = i{f(2) + F(2)}, (14-14)
vy = By -ithy = f(2) ~ F(2) (14:15)

satisfy the boundary conditions for the functions ¢, ¥, and, provided their form satisfies
the physical requirements of the problem as to finiteness and continuity across the
cross-section, they will be the solutions holding throughout the cross-section.
Obviously the determination of the canonical flexure functions ¢,, ¢, and their
conjugates ¥,, ¥, is a problem of this type, in which the boundary condition is

i, = Z22/4+23/12. (14-16)

To illustrate, consider the flexure problem for the circular cross-section of boundary
zZ = a2, by means of which the boundary condition can be rewritten in the separable

form

Comparing with (14:13), we may take
Sf(z) = a%z/4, F(Z) =7Z3/12,
giving at once from (14-14) and (14-15) the solutions
v, = 1a’z[4+123[12, o, = a’z[4—23[12, (14-17)

which are readily seen to be satisfactory solutions in every way.
By a simple adaptation of the method we can find the two remaining non-zero
canonical flexure functions y;, y, for the circular cross-section, and their conjugate

functions x¥, x¥, where ' _
Qp =y +uxf, Qo= +ix3.

These have to satisfy the boundary condition
J N —aine
n {X1+ix,—22*/4 =212} = 0
over the circle zZ = a2. This boundary is also given by
§ =a=loga,
where ¢E+in = { =logz = logr+10,
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184 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

and since /0§ = 3/d{+ /3¢, the boundary condition can be rewritten
a __a_ ) —. 1 _EZE 1(-2_ 4 52 @
(ngF(;Z) (X +ixa} = fzzngrz(Z +2?) v
or a%(xl—l—ixz) = 322°[4+Z°/4,

and, on making use of the equation of the boundary to render the right-hand side of
this equation separable in z and z, we have

gg (x1+1ixe) = 3a%z/4+23/4. (14-18)

But if ity = f(2) + F(E), (14:19)
so that Q, = flz) +F(z), (14-20)
0, —i{fiz) - F2)}, (14-21)

we have in this problem

. . dz
R =P E-2

and the boundary condition (14-18) is satisfied by taking

F(2) gg — 3a%[41-C, F'(2) ‘% —28/4—C.
Hence f(z) = 8a%z/4 and F(z) =2Z3/12,

the terms of the solutions arising from the constant C being rejected as they become
infinite at the origin. Accordingly from (14-20) and (14-21) we find

Q) = 3a’z/4+ 2312, Q, = —1i{3a’z/4—2%[12}, (14-22)

which completes the discovery of the canonical flexure functions in this simple case.
Several further examples of the use of the methods given in this section will occur in
the later sections.

In the cases above the physical suitability of the canonical flexure functions has
been fairly obvious: we shall discover that in the general case it is not always possible
to avoid singularities in the functions y,, x,, x; considered separately, and we may
have to include infinities at certain points. But from the nature of the physical problem,
in which our functions always occur in the combinations y; —/Ays, x,—kys, these com-
binations must almost always be free of such infinities, infinite stresses at a re-entrant
angle being the only allowable possibility. The avoidance of unphysical solutions in
the combinations, when they occur in the separate canonical functions, affords a
check on the calculated values of the co-ordinates (%, £) of the centroid of the cross-
section. This feature cannot occur with the three remaining canonical functions, since
¥, must give a physical solution separately, being the torsion function, whereas y,
separately need not be a physically admissible solution in the sense explained above.
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15. CROSS-SECTION A CIRCULAR SECTOR

The next three sections are devoted to the particular solutions for certain cross-
sections (for which the classical Saint-Venant flexure functions are known) with the
various objects of clearing up several puzzling discrepancies of signs of the associated
flexural twists, exhibiting the advantages of the canonical flexure functions, and
illustrating the method of § 14 where convenient.

For our first example we take the boundary to be given, using polar co-ordinates
(r, 0) such that z = x4y = ré?, by

r=a, —p<i<
, —p<b<p s
0= I}:ﬂ , 0<r<a,
as indicated in fig. 3.
AY
P
pr—"
0 : >z
B
F1c. 3. Circular sector cross-section and scheme of co-ordinates.
The canonical flexure functions
The canonical flexure function ¢, satisfies the boundary condition
3 3
¥y = ~3~cos3 f 4+ const. = 1z (cos 30+ 3 cos f) + const.,
3
which becomes v, = 17—2 (cos 3f+3cosf) along 0 =44
a3
=15 (cos30+3cosf) along 7= a.
Accordingly we take the plane harmonic solution
¥y = Ar3cos 30+ 2a®A,,(r/a)™ cos mb,
which satisfies the boundary condition along § = 4/, if
cosmf =0, ie mf=n+d)mn, n=0,1,23, ..., (15-2)
and A = (cos 3f+3cosf) /12 cos 3f, - (15-3)

Vor. CCXXXVII. A. 24
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186 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

and will also satisfy the remaining boundary condition along r = g, if

cosf

ZA cosm0—~ cos 38

cos 30 —cos 19} =f0), —p<0<p,

replacing 4,, by 4,.
From the Fourier expansion as a cosine series for the range 0< <2/ of the function
F(8), given by

F(0) =f(0), for 0<O<p, | (15-4)
—f10-28), for f<0<2p,
Hence W, = ¢, +iyp, — iAdz3 |-id} f}j;.A,,(z/a)m, (156)

where m, 4 and 4, are given by (15-2), (15-3) and (15-5) respectively.
Next consider the canonical flexure function ¥, which has to satisfy the boundary
condition

3 i 3
Uy = T sin3 0+ const. = - (3 sin f—sin 36) |- const.,

3 12
and this becomes

¥y = (3 sin ,b’ —sin 3f) 4-const. along 0 = +f,

a3
=15 (3sin f—sin 30) +const. along r = a.
Accordingly we write ¢, = Br3sin 30+ Xa®B,,(r/a)™ sin m0,
which is a plane harmonic function, satisfying the boundary condition along # = +f,
if

sinmf =0, ie.mf=nm n=0,1,23,..., (15-7)
and B = (3sinf—sin 3f)/12sin 3/, (15-8)

the remaining boundary condition along r = a becoming

_ _Sinf
nZOB sinmf = {sm 0 in 3ﬂsm 30} = ()
replacing B,, by B,.
With this value of f(#) the Fourier expansion of F(), defined by equations (15-4),
as a sine series gives

B LSnp( 1 I .
By = (=1) 4p {m——3+m-l—3 m—1 m~|~l}' (15:9)

Hence Wy = Gy tithy — B3 4ad S B, (z)a)", (15-10)

n=0

where m, B and B, are given by (15-7), (15-8) and (15-9) respectively.
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The canonical function §; must satisfy the boundary condition
V5 = 412 4-const.,

cos 20
cos 2f
where m is given by (15-2), the boundary condition is satisfied along ¢ = +/, and the
remaining boundary condition along r = a becomes

® ‘ 1 cos 20
3 Cycosmf -2~( ol ﬁ,) 1),

so that if we write ¥y = Lr?

+2a?C,,(r]a)™ cosmd,

replacing C,, by C,.

With this value of f(¢), the Fourier expansion of F(), defined by equations (15-4),
as a cosine series gives
_ (=) {2_‘1__ 1 } :
Ca= 28 \m m—2 m+2]° , (15-11)
Hence = @yt 1Yy = o8 2/5, +1a? Z C,(z]a)m, (15-12)

where m, C, are given by (15-2) and (15-11) respectively.
The canonical flexure function y, must satisfy the boundary condition

3
-(%(xl ——%cos3 (9) =0,

2

which becomes (33(71 ‘; (cos 30+ 3cosf) along r = a,
Ay . .

and 7 :F~4 (sinf+sin3f) along 0 = 4-f.

We take therefore the plane harmonic solution
x1 = a3Dgylog r+- Dr3 cos 30+ Xa®D,,(r/a)™ cos m0
which satisfies the boundary conditions along # = 4-§, if m is given by (15-7) and
D = (sinf+-sin 34)/12sin 34. (15-13)

The remaining boundary condition along r = a becomes

D+ EmD cosml = {3C sf— fﬁCOSM = f(0)

on putting D, for Dm.
Using this value of (), the Fourier expansion of F(f), defined in (15-4), as a cosine
series leads to

D, = 2sin /3, (15-14)
- LSinf1e 1 1 9 9 )
Dy =(=1) 126 \m "m— 3+m+3 m—1 m+l}' (15:15)

Hence R, = x,+ix¥ = a’D,log z+ Dz3+ a3 Z D, (z/a)™, (15-16)
n=0

24-2
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188 A. G. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

where m, D, D, D, are given by (15-7), (15:13), (15-14) and (15-15) respectively.
The term in D, appears to make this an unsuitable solution since the logarithmic
infinity occurs in y, at the origin, but we shall show that the logarithmic infinity dis-
appears from the combination y, —/Ay;, and y, and y, always occur in this combination
in the physical problem.

Next the canonical flexure function y, must satisfy the boundary condition

3
gﬁ(h—%sim 0) =0,

2
which becomes %2 = % (3sinf—sin30) along r =a,
dyx, 13
and Ay (cosf—cos 3f) along 0 = 4p.

Accordingly we take the plane harmonic solution
Xo = Er3sin 30+ Xa3E, (r/a)™ sin m@
which satisfies the boundary conditions along § = -+, if m is given by (15-2) and
E = (cosf—cos 3f) /12 cos 34. (15-17)

Putting E,, = E,, the remaining boundary condition along r = a becomes

< . e, cosf . -
ngomEn sinmf = 4<3 sin 6 cos 3ﬂsm 30} = f(0).

With this value of f(6), the Fourier expansion of F(f), defined in (15-4), as a sine series
gives

__nﬂg%é’{l_ﬁ'l 1_9_9} :

E, = (-1) 198 \m T3 w3 w1yl (15-18)

Hence Q, = xyHixk = —iES—iad 3 E,(z/a)m, (15-19)
n=0

where m, E and E, are given by (15-2), (15-17) and (15-18) respectively.
Finally the remaining canonical flexure function y, must satisfy the boundary
condition

%:

or
ar

a along r=a, %7;3 =0 along f = +p.

These are satisfied by the solution

Qg = x5+ ¥ = a2 log z. (15-20)
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The critical term in the combination y, —fy5 is accordingly

a2( ~g?f—l ﬂg,ﬁ)) log r

which vanishes since h = 2asin /30,

and so the solutions for y, and y; are completely satisfactory.

The moment integrals

We have the following results for this cross-section:
S = fa?, fx2 dS = a*(2f+sin 2f)/8, fxyz dS = 2a°sin® f/15,
fyzdS — a4(2f—sin 20)8, fxﬁds — 245(3sin f—sin® f) /15,

and we have to calculate the three moment integrals L,, M, M.

We write Q= 0y, +82y,, with Ly = L} +Lj, to correspond,

where Qy) = —iEZ, Q) — —ad %Enwn,
and 0, =1i(zfa)", mf = (n+3)m.
Then from (8-3) Ly — R{3E 2 ds} — 3E f (%% — 3xy?) dS
or L5, = a’tan 3f(cos f—cos 3f) /30,
using (15-17) and (15-22).
Also Ly, = —a EOE,, L,
where L =—R{mf(z/a)mds} = (—1)"12a2/(m+2).

Hence from (15-18) we find

, _a@cosf 1 1 4 3 4
Lo = f §0{ 30(m——3)+2(m—1) ‘é%+2(m+1)*5(m+2)+6(
, _acosf @ 1 1 4
or Ly = T "go{—SO(n_}_lm%)—I—g(n T /,))_3 1
2 2 7 (”+§)
3 4
[ PR Y R
2w 2w 71
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190 A. CG. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

We now make use of the Psi function (or digamma function) (Davis 1933, 1, 277;
Bromwich 1908, pp. 475-6; Adams 1922, p. 132) defined as

b =—r— 3 -k (1525)

a0 \n+x n-+1

where y is Euler’s constant, and so obtain

L= T cospl 5+ 2 )+ 00(5+ %) a3+ %) + 401

DOj=
S

But the digamma function satisfies the equation

Y(l—x) = y(x) +mcotmy; (15-26)
hence g&(—;——%’é}) = ;0(2 3 ) 7 tan 3f,

o) ol l) v
whence, on collecting up our results,
Ly — 3a5sinf— s adsin 34
~wpmycosply(3+E) - w(5+ 7) 2t (5+ ) - ).
Finally, from (7-4) and (15-22), we have
1, twsin - @atim) cosply (3 + £) w5+ 7 ) i (5 )~ )] 5m)

Next, from (15:6) we have
0, = 0+ w0, with M{ = M{ + M|, to correspond,

where wy, =142, w,=ad3 4,0,
n=0
using (15-23). Then, from (8-4),

My, — R{—3A zsds} - mgAf(ngxyZ) ds

or M|, = —ad®tan 3f(8 cos f+cos 3f)/30
on making use of (15-3) and (15:22).
Also M, =a® EOA,,L;,
and using (15-5) and (15-24) we have
, ddcosf & 1 1l 16 1 }
My, = p ,go{l()(m—3) 6(m—1) 2(m-+ 1)+15(m+2)+2(m+3) ’
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Al Y

on using (15-25), which reduces further on making use of (15:26) to

leading to

Miy = cos pliw(5-2) + b3+

m

M, = @ cos f(; tan 3f —} tan ) -+ ""005/3’{3%( ﬂ) ig%(g—iﬂﬂ) %(2+f)}

m

Hence finally from (7-4) and (15-22) these results give

M, = &dsinfi+ - cosﬂ{mﬁ( ﬁ) 1—23//(;'1—2@)—{—%%(-;—!—%’[1))} (15-28)

71
In similar fashion, from (15-12) we write

b ’ ’ ’
Wy = g, + 039, with M3 = M, + M3, to correspond,

e o]
= 2 — g2
where _ wgy = 122/2cos 20, w3, =a? > C,0,
n=0

using (15-23). Then from (8:4) we have
My, — R{- f 22dScos 2/3} — — sec 2,6’J (x2—y?) dS

at
or Mg, = —4 tan 26

from (15-22). Next we find M3, = a? % c,L,
n=0

and using (15-11) and (15-24) we have

VS N RN B SR SN —
AT T )

on using (15-23).
If now we use the trigamma function defined as

VW) =5 e

together with (15-25) and (15-26) we find

(15-29)

My =G anop+ @) —p(5+2)+ Ly (11 H)).

m
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 193

Hence finally from (7-4) and (15-22) these results give
we oS DY)

These results in terms of the digamma and trigamma functions appear to be new.

The associated twist and the flexural centre

The results (15-27), (15-28) and (15-30) used in (11-13) and (11-14) enable us to
compute very easily the associated twist, the position of the centre of flexure and the
torsion moment for the cross-section, thanks to the recent extensive and useful tables
(Davis 1933, 1935) of the digamma and trigamma functions. In certain cases the results
for L,, M, and M, are expressible in simple terms. This arises from Gauss’s results
(Davis 1935, 1, 286) for y(p/q), where p and ¢ are integers. In particular we have

¥(3) =—2log2—y, (15:31)
¥($) =—3log2—y—m/2, (15-32)

and we have also the simple results
V(1) =6, P (3) = 2. (15:33)

From these we are led to the following results:

(1) The quadrant section.

When the angle 2/ of the sector is 7/2, we find
Lyja® = (/2/157) {28 log 2—4m—4} = 0-0852825,
M, /a® = (/2/15m) {12+ 27— 24 log 2} = 0-0494470, (15-34)
M;fa* = (1/6m) {n*—12log 2} = 0-0823276.

(2) The semi-circular section.
When 24 = 7, we have

Lyjad =% = 0-4000000,1
M,a® = & — 0-1333333, (15-35)
M,/a* = (n%—8)/2m = 0°2975568.J
(8) The circular section with quadrantal notch.
When 2§ = 37/2, we find
Lyjad = (J2/15m) {117 2810g2 47} = 0-7181604,
M,|a> = (J2/15m) {27T+2410g2 124} — 0-1561878, (15-36)

Myjat — (1/4m) {202 —17—8log 2} — 0-5724828.

Vor. CCXXXVII. A. 25
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194 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

(4)  The circular section with complete radial slit.

When f = m, we find
L,jd® = 512/225m = 0-7243318,)
M, /a5 = 64225 — 0-0905415, (15-37)
M,ja* = (972 —64) /97 = 0-8780557.

With some labour this list could be extended. Both L, and M, can be expressed -
readily enough in a variety of cases using Gauss’s result for ¢(p/q), but Davis’s analogous
result (1935, 2, 17) for the trigamma function ¥’(p/q), which would be needed for A,
has not the same simplicity. It is much more profitable to use the tables which admit
ready computation in any particular case. This has been done at intervals of 9° in f
(and at closer intervals in certain interesting regions where the associated twist changes
sign). The results are given in Table I for the corresponding moment integrals, as-
sociated twist, co-ordinates of the centre of flexure, and the so-called *‘total torsion”.

Comparison with previous results

It appears from Table I that the associated twist 7° in column 8 changes sign twice,
the centre of flexure moves along the axis of symmetry and passes through the centroid,
coinciding with it at approximately 42° and 56°, the exact values being dependent
upon the elastic constant. Thus so far as the mean twist of the cross-section is con-
cerned we do find a change of sign for similar cross-sections even among the family of
circular sectors, without having to consider other cross-sections as Young, Elderton
and Pearson suggested. Even if we use their “total torsion”, column 9 shows that
we still get this change of sign as a possibility. It is true it will only occur for small
and unpractical values of the elastic constant, but it is only in this practical sense that
we can endorse the statement of Young, Elderton and Pearson’s (1918, p. 23) that
“since the total torsion is always negative the angle edge of the prism will always move
in direction of flexing force”. Incidentally they should have been able to deduce
this change of sign from their own table of values for their twist 7, from the value when
our f = 45° at least for small values of 5, which should have shown them that there is
nothing anomalous in a change of sign of the associated torsion. Allowing for differ-
ences of definition already discussed in § 13, our numerical results for 7 will be found
to be consistent with Young, Elderton and Pearson’s values for their twist 7. The
use of the canonical flexure functions results in a tremendous simplification of the
algebra of the problem, and the tabulation of the digamma and trigamma functions
has brought a corresponding gain in simplification of the necessary computations.
It is clear that a similar treatment of the curtate sectors would result in a similar gain
in the algebra of their case, and a proper treatment of the associated twist and the
moment integrals would be worth carrying out to obtain the positions of the flexural
centres, which are of special importance in thin walled-sections.*

* For one case of the curtate sector (the semi-circular “gutter” section, f=m/2) see Leibenson
(1935, p- 17)-
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 195

Table I also shows to what extent an experimental method which treats the ‘“total
torsion’’ as the real associated torsion can be in error. In Duncan, Ellis and Scruton’s
experiments on the thin triangular sections, for example, which are comparable with
thin circular sector cross-sections, it would appear from the difference between the
coeflicients of 7 in columns 8 and 9 that the influence of 5 on the value of the associated
twist is erroneously approximately doubled.

Timoshenko (1934, p. 301) obtains a solution for the semi-circular cross-section,
giving the abscissa of the flexural centre as

Jola = (8/15m) (3+-49)/(1+1) = (8/16m) (4—0). (15-38)
But equations (11-14) and (15-35) lead to
Sola = (8/15m) {8+40(10/n2—1)}, (15-39)

which does not agree with Timoshenko’s value. Noticing that the solution for a
circular cross-section gives no stresses across the diameter parallel to the load, Timo-
shenko assumes that the same displacements and stresses give the solution for the
semi-circular section under half the load on the complete circular section, but acting
at some point on the axis of symmetry, which he proceeds to find with the above result.
All this is quite satisfactory until he calls this point the ““flexural centre”’, which how-
ever it is not. It is the load-point when the local twist vanishes at the midpoint of the
straight boundary, and not the load-point when the local twist vanishes at the centroid
of the section, since the solution was derived from the displacements and stresses which
made the local twist vanish at the centroid of the complete circular section.

This example serves to emphasize the present writer’s contention in § 13 that the
associated twist and the anticlastic displacements should be defined with regard to a
definite point of the cross-section, otherwise such terms as “the associated twist”
and ‘““the flexural centre” can have no uniqueness of physical meaning. When the
demands of the general asymmetric cross-section are taken into account, it is clear
that this origin of reference should be the centroid of the cross-section, as we have
consistently used. _ _

For a thin blade section, symmetrical about the axis of y, Griffith and Taylor
(1921, p. 968) find a formula for the distance 7 of the centre of flexure from the origin
of co-ordinates (which is the centroid of the cross-section) as

y =ft3y dy / fﬁ dy,

where 2t is the small thickness at a distance y from the origin. This result follows from
their approximate theory of thin sections. They show (1921, p. g60) that for a circular
sector of small angle and radius a, this gives ¥ = 0-84. Comparison with the first entry
of column 7 in Table I shows that this would agree with the exact solution if the elastic

constant ¢ were zero. It is clear from the formula that the approximate solution makes
25-2
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196 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

the centre of flexure independent of the elastic constant, which is not the case in the
exact solution. It is just in these cases of thin sections that the influence of the elastic
constant on the position of the centre of flexure becomes relatively important, as
column 7 of Table I shows, for example. The approximate theory for thin sections
has also been discussed by Duncan (1932, p. 8go) who gives a formula which, in our
notation (see note in §2), is

y=(1+ 20)fyt3dy / ft%z’y

and the result for the circular sector of small angle and radius a is then (0-8+1-60)a.
For values of ¢ greater than 0-125 this brings the centre of flexure outside the cross-
section. Duncan’s formula would here appear to overestimate considerably the
influence of the elastic constant.

Using the method of generalized plane stress in his work on the behaviour in bending
of thin-walled tubes and channels, Williams (1935) also finds a formula for the
position of a so-called centre of flexure which is independent of the elastic constant.
This centre should, however, be distinguished as the “centre of least strain”. These
approximate methods need further comparison with exact solutions.

16. CROSS-SECTION A CARDIOID

This section illustrates well the method of § 14 for a uni-axial cross-section, the
solution for which, given by Shepherd by a less direct process, was the first solution
in finite terms for a prism of uni-axial symmetry.

Using orthogonal curvilinear co-ordinates defined by

E+ip={=2z"% wherez=x+iy = re, (16-1)
a0 .0
we find E=r bcosg, =7 ‘%sm—Q—, (16-2)

so that £ = const., 7 = const. give two families of orthogonal cardioids. We shall take
as the boundary of the cylinder
E=a=(2a)"% or r=a(l+4cosl), (16-3)

and the equation of the boundary can also be written

(+¢=2x, or z7¥4Z7t= 20, (16-4)
whence (2Z) = (2t +2%) /20 (16-5)
and 2Z = (z+Z) [4a2+ (22 +-Z%) /40, (16-6)
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The canonical flexure functions
Using (16-6), we have by inspection on comparison with (14-6) and (14-7)
0y = Gy + 15 = 1z[40? + 128403 = daz|2+128a¥23/2,

substituting for « from (16-3).
Again 722 = z(zZ), and using (16-5), (16-6), we have

Z3/124+-222/4 = Z3[12+22/1602 + 241603 + (82 +Z) [64at 4 (22 +Z%) /3245,
Hence the boundary condition for ¢, and ¥,,
Vi-tith, — P[124222/4 — f(z) + F(2),
gives Sz) = 22/160%+ 241603 + 32/ 640t + 2¥/32a5,
F(z) = 23[12+z/64a* + 2}/3245,

and then (14-14) and (14-15) give, substituting for a from (16-3),

0, = ¢, + 1y, = 1{2°/12+ az?[8 + 2842} [8 + a?z/4 + 2ba’Zh 4},

0y = Qo+ 1y = —23[12+ az?[8 + 2batz¥/8 -+ a?z/8.

The canonical flexure functions y; and y, satisfy the boundary conditions
d A _
a—g{Xl +ix,—2*[12—22%/4} = 0,

dz

. . _
Wt} = (22 +2%) 5

_dz
+%ZZ? )

¢

o~

since 0/d¢ = 0/0{+ /L, or using (16-1)
“gg{?ﬁ +ixe} = §(22 +20) 2z
But using (16-5), (16-6) this can be written in a separable form as

—;%{xl gy} = 424 2t /da? + 5221605+ (924 1 24) 320

+ (724 32) /3205 + 5 (2t +-Z%) /3245,
and from (14-19)

~f’(z)Z—z = z%/402 + 522/1603 + 92%/320% + 72/3205 + 52%/8248 + C,

-—F’(’Z)%=Z%/2 +2%/32a* + 8Z/32a5 4 5z%/3205 — C,
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198 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

where C is a constant, which however we take to be zero to avoid infinite displace-
ments at the origin, and using (16-1) we have

J(z) = 2%/1602 + 5284803 + 9z/64a* - 72} 3205+ (5 1og z) /6445,

F(z) = 23/12+z/64a*+ 32%/320° + (5 1og z) /644S.
Hence (14-20) and (14-21) give, on substituting for « from (16-3),
Q, =y FixF = 28/12 +az?/8+5.2%a¥z4 /24 + 5a%z[8 + 5. 28a 2[4+ (5a%log z) [4, (16:11)
Q, = xy+ixF = i{z3/12—az?/8 — 5.2bab 24 (24 — a?z/2 — 2-¥ai Y}, (16-12)

where, for (16-11) to be a physically admissible solution, we shall have to show that
¥, — ks is independent of the logarithmic term which becomes infinite at the origin.
The remaining canonical flexure function x4 has to satisfy the boundary condition

Oy _ 0 (1 1,92, 15 o4
9 —55(522> —iz’der izd—gﬁ—zz(z +2z%),

or %Xf = — (22424 402 — 3(z+Z) /803 — 3(2F +-Z}) [8act,

on using (16-5) and (16-6) to separate the variables z, Z in this boundary condition.
But if we take y;+ix¥ = f(2),

dz

0 ,, . dz _—
GV @ g
and if we put 11'(2) g% = —z¥/402— 32/803 — 82%/8at +iC,

where C is a real constant, the boundary condition is satisfied. Using (16-1), we find
fz) = z/4a?+ 3z} [40® 4 (3 log z) [8at,

dropping the term in C, which gives rise to a physically inadmissible solution; hence,
substituting for « from (16-3), we have

Q, = ys+ix¥ = az/2-+3.27%abzt 4 (34%log z) /2. (16:13)

This will be a suitable solution provided the combination x, —/y; contains no term
arising from the logarithms. Now the critical portion of x; —/Ays is

{3a%h/2—5a%/4} Rlog z,

which vanishes if # = 5a/6, which is the case, so that our solutions (16-7), (16-9)—(16-13)
are satisfactory in every respect.
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The torsion and flexure moment integrals

We have the following results for the cardioid cross-section:

b= 5a/6, S = 3ma?2, f (2 y?) dS — 357m4/16,]

(16-14)
JyzdS = 21ma*/32, fxyz ds = 33ma®/64, fx3 as = 1357ra5/64.J
Using (8-3) and (8-4), we find by elementary integration
L) =107n4d%/64, M| =—"77ma%/64, M;= —9ma*/8,
whence, from (7-4) and (16-14), we have
L, = 37ma%/32, M, = 297a%/32, M, = 17ma*/16. (16-15)

The associated flexural torsion and the centre of flexure

These values of M,, M; and L, give for the associated twist 7, from (11-13) and
(16-14) '

7 =—(W'a/EI') (3+47)/51 (16-16)
and from (11-14) Jola = (111+20)/126; (16-17)
hence (fo—h)|a= (3+0)/63,

and so when the load-point is the centroid it appears that the general twist takes the
line of cusps in the direction of the flexing force. Incidentally in this case the anticlastic
displacements enhance the visible effect of the twist as indicated by the relative twist
of the axis of symmetry, since the so-called ““total torsion” is

— (W'a/EI") (6+257)/102.

The relative position of the centre of flexure F and the centroid G is shown in fig. 4a;
note that the sign of the associated twist 7’ is that of the moment of W' localized at G
about F.

Comparison with previous solution

The result (16-16) agrees numerically with that due to Shepherd (1936, p. 507) but
the situation with regard to the sign needs some consideration. His notation with regard
to axes, description of the beam, and loading differs from ours. He takes z = 0 as the
loaded end-section with the load along the negative y-axis, but nowhere states explicitly
the location of his cylinder, i.e. whether the elastic material is given by z>0, or by
z<0 (see figs. 4b, 4¢). He finds (for 7 = 0-3) a position of the flexural centre on the
side of the centroid remote from the cusp, with a positive associated twist, a state of
affairs which is only consonant with the load W along the positive y-axis as indicated
in figs. 4b, 4c.

In his paper Shepherd corrects the sign of the associated twist in a former paper
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200 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

(1932, p. 607) in which he discusses the uni-axial cross-section in the form of a circle with
a radial slit of any depth, extending inwards from the circumference. In that paper he
stated that ““ the twist is such that the side of the shaft in which the slit is cut is turned in
the direction of the bending force”, and this result is in agreement with our result for
the cardioid and also that for the circle with complete radial slit obtainable from
the entry for f = 7 in column 7 of Table I. The effect of his correction in his second
paper would be to reverse this result so that we are apparently no longer in agreement.
When we examine the stresses given in his second paper on pp. 500, 501 we find

F1e. 4. (a) Cardioid cross-section, scheme of axes used in § 16. () and (¢) Schemes of axes for
comparison with a previous solution.

and the discrepancies disappear if his analysis is regarded as for the beam z< 0, with
the load at the section z= 0, but along the positive y-axis, and not the negative y-axis as
stated by him. His correction in the second paper should still stand, of course, and
then his results for the cardioid section and the now doubly corrected results for
the circular shaft with radial slit are brought into line with Young, Elderton and
Pearson’s result for the circular shaft with complete radial slit.

17. CROSS-SECTION A RIGHT-ANGLED ISOSCELES TRIANGLE

The flexure problem for a beam whose cross-section is an isosceles right-angled
triangle has been considered by Seth (1933), and the corresponding torsion problem
by Galerkin (1919) and Kolossoff (1924). The object of this section is to find the
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associated twist and the centre of flexure for this cross-section, which was not attempted
by Seth. We shall need the torsion moment also, which was not evaluated by Kolos-
soff; the writer has been unable to consult the work of Galerkin.

The canonical flexure functions

Here the equation of the boundary is (see fig. 5)

(x—a) (x*—y?) = 0,

or (z+z—2a) (z2+22) = 0, W

whence zz%472% = 2a(z2+722) — 23 —Z5. (17-1)

The x-axis divides the cross-section into two parts each of 15

which is still a right-angled triangle, the boundaries of the  lZ___}_ a~-——->

three triangles being included in 45° *
y(x—a) (¥*—y?) = 0,

or (z—2) (z+z—2a) (22+422) = 0,

whence 222 —72% =73 — 234 (24 —2Z%) | 2a, (17-2)

so that round the boundary of our cross-section we may re- Fic. 5. Cross-section a
place zz2 by a separable form in z and Z and the boundary  right-angled isosceles

condition triangle.
U, i, = 2312 +22%/4
becomes, on using (17-1) and (17-2),
U+, = a(z22+-2%) [4—23]6 — (2t —Z*%) /16a.
With the method of § 14, we have at once from (14-13)
f(z) = az?/4—2z*/16a,
F(z) = az%[/4—23/6+-z%/16a,
and (14-14) and (14-15) give us
wy = @+ = i{—23/64az?/2}, (17-3)
Wy = Qo+, = 23/6—2z%/8a. (17-4)

For the flexure functions x, and x, = x; — A3, we proceed in the manner used by Seth
in finding the Saint-Venant flexure functions. Since y, satisfies

9
9 (2 —9°[3) =0

Vor. CCXXVII. A. 26
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202 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

round the boundary, the boundary conditions to be satisfied are

W2 _ over x = a,

0x
0o, (W2 2 _ —
a7 v) =0 overy—x

Assuming a plane harmonic solution
Xo = Axy -+ B(y*[3—x%),
we ﬁnd the boundary conditions are satisfied by
A=a, B=1%;

hence Xo = axy + (y3/3—x%y) /2. (17-5)
Since & = 2a/3, x, satisfies

D (3 ale 4473} = 0
round the boundary, so that the boundary conditions are

J
gxx—‘* = a%/3 over x =a,

{%7%~x2+2ax/3};t{%—2ay/3} =0 along y =+x.
Assuming a plane harmonic solution
Xe = A —42) - B — 3ay%) + Clat — 622 14,
we find the boundary‘conditions afe satisfied by
Ad=—al3, B=1% C=-—1/24aq,
so that
X = X1—hxs = —a(x2—y?)[3+ (x°— 3xy?) |6 — (x* — 622 4-y*) [24a. (17-6)
There remains the torsion function, and to find this we write
¥y = stax—(x2—9%)/2,
then ¢ is a plane harmonic function which has to satisfy the boundary conditions
V3 = x2—ax--const. along y =+«
= const. along x = a.

Consider the plane harmonic function

¥, = cosm(x—a-+y) sinhm(x—a—y) +cosm(x—a—y)sinhm(x—a-+y), (17-7)
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which reduces to zero over x = @, and if

cosma =0, ie.m= (nt+%)n/a, (17-8)
reduces to (—1)**lsinhmasin 2mx over y= -+ x.
Hence we write Vs = 2 a,¥,
n=0

and determine the coefficients a, from the boundary condition

@0

Sf(x) =x2—ax = Y a,(—1)""1sinhmasin 2mx+ const.
n=0

From the Fourier expansion as a sine series for the range 0<x<2a, of the function

F(x) defined by
F(x) =f(x), for0<x<a,

= —f(x—2a), fora<x<{2q,

2 1 . X
2w — — (84273 ™
we have x¥?—ax (8a2/m 220 (2n+1)3s1n(2n+ 1) o
whence a, = (—1)"/am3sinh ma. (17-9)
Hence ws=¢3+i¢3=iaz—_iz2/2+§anwn, (17-10)
n=0
where w, = ¢,+1y, = sin[m(1+1) (z—a)] —sin[m(1 —1i) (z—a)] (17-11)

from (17-7).
This result is equivalent, due regard being paid to the change of axes necessary for
comparison, to Seth’s transcription of Kolossoff’s result.
The torsion and flexure moment integrals

For this cross-section we have the following results:

k= 243, f ¥dS = at/2, J Y2dS — a4/6,

(17-12)
S —a, nyZdS — 20515, (x%dS = 243/5.
From (7-5) and (17-5)
L—a f (22— y?) dS—1 J"(xs—sxyZ) dS = a3,
on using (17-12), and then from (7-4) and (17-12) we find
L, = d3/5. (17-13)
Again from (8-4) and (17-3)
M =— f(xz—yz) a’S—i—%f(xS—fsxy?) dSs = —a*[3,
26-2
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204 A. CG. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

on using (17-12), and then from (7-4) and (17-12) we have

M, = ad/15. (17-14)
Writing W3 = W+ 039, With My = M, +Mj, to correspond,
where, from (17-10), W3, = 1az—12%2, W3y = > a,0,,
n=0

we then have, from (8-4),

My, — ~afde+f(x2—~y2) dS = —a*/3
on using (17-12).

Also from (8:7) M, =R f yz%mg R34 f 1229 4.
ds n=0 as
where the line integral is taken round the cross-section, whence
M, =S mafal,coshma+4(—1)"I,—I,—I},
n=0
where 1, 1,, I, I, are given by

I, :J:xz cosm(2x—a) dx = (—1)"(a/2m—1/2m3),

I, :faxZ sinhm(2x —a) dx = (a%/2m) coshma— (a/2m?) sinh ma,
0

I+, =f+a(a2+y2) cosm(l—1)ydy
= (—1)"{(2a?/m+1/m3) cosh ma— (2a/m?) sinh ma}
+i(—1)" (2a%/m—1/m?) cosh ma,

leading to M, = 3 (2a,/m?) (—1)"*1coshma,

n=0

where a, is given by (17-9) or

Mg, =—2 i (coth ma) /am®.
n=0

Hence, finally, from (7-4) and (17-12) we have

26 2 coth(n-4) n
775n—0 (2n+1)5

M, = a“{% = 0-10435864*. (17-15)
The coefficient of a* would appear to agree with a result 4/38-3, quoted by Timo-
shenko (1934, p. 25I), possibly taken from Galerkin’s paper, which the writer has
not been able to consult.
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 205

The associated twist and the centre of flexure

Using (17-183), (17-14) and (17-15) in (11-13), we find with the aid of I’ from (17-12)
that the associated twist 7’ is given by

7 = (W'a|EI') {0-2129410 -+ 0-0278437p}, (17-16)
whilst from (11-14) the abscissa of the centre of flexure is given by
foJa = 0-6—0-00871710. (17-17)

This completes Seth’s solution by relating the constants of the solution completely
with the external force system.

It appears that the cross-section twists so that the right-angle edge of the cylinder
is bent away from the flexing force, and although the anticlastic displacements tend
somewhat to mask the visible effect of the twisting made evident by the relative dis-
placements of the ends of the axis of symmetry, the so-called ““total torsion” of § 13,
given by equation (12-2), being

(W'a/EI') {0-2129410—0-13882305}, 0<y<i,

it is clear that for no possible value of # can this become negative.

18. CROSS-SECTION A LOOP OF THE LEMNISCATE OF BERNOULLI

The object of this section is to give the correct solution for the cross-section which
is a loop of the lemniscate of Bernoulli, to replace the incorrect solution given by
Young, Elderton and Pearson (1918, p. 61). It illustrates the method of § 14,
and is in fact the problem which led to the discovery of that method.

Consider the system of orthogonal curvilinear co-ordinates &, 7 defined by

(z4¢) (z—c¢) = 2?8, (18-1)
where { = §-+ip, z = x+y. Writing
z—c =160, z+4c¢=r,6"%,
(18-1) is equivalent to ity = c%%, 0,40, =2y,
or, in cartesian co-ordinates
(X2 — 2 —c2)2 4 day? = ¢ttt
x2—y?—c? = 2xy cot 2,

so that £ = const. gives a family of quartic curves (Cassini ovals), called by Basset
(1884, p. 242) confocal lemniscates, with real foci at z = +¢, and 7 = const. gives the
orthogonal family of curves, which are rectangular hyperbolas, each of which passes
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206 A. CG. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

through the foci of the lemniscates. At infinity, £ =o0; at either focus §{ = — c0.
From (18-1), the curve £ = 0 is given by

z = ré? = ¢(2cosy)ted, (18-2)
or 72 = 2c? cos 20, (18-3)

J in polar co-ordinates, so that the curve { = 0 is the
’,»" / - lemniscate of Bernoulli. This separates the lemniscates
ra for which £>0 and which are single ovals from the
' lemniscates for which £ < 0, each of which consists of a
,"n, pair of ovals, one about each of the two foci z = +¢.
/ If we take the portions of a hyperbola in the four
E cartesian quadrants to correspond to values 75, 7-+7/2,
: n—m, §—m/2 respectively, there is a discontinuity of
\ 7 in crossing the x-axis between x = +¢ and x = —o,
>z and a discontinuity of 27 along the x-axis for x<< —¢.
One loop of the lemniscate of Bernoulli encloses the

N1 e N region
S —0<f<0, —m/2<y<n/2,

"™~ and thisis the boundary of the cross-section considered
Fic. 6. Cross-section one loop of (see fig. 6).
the len‘nmscate of Bernoulli. (G = Along the lemniscate £ = 0 we have 22— ¢? = (2%,
centroid, § = focus, F = centre of . . .
flexure.) so that the equation of the boundary in conjugate
' complex variables z and Z is

(22—¢?) (22—c?) = ¢t | (18-4)
from which we have that, along the boundary,

247 = 2272 = 28)(22—¢2) =24/ (22— 7). (18-5)

The canonical flexure functions
From (18-4) we have (22—¢?) (z—¢) = ¢*/(Z+0)

so that round the boundary we can express zz? in separable form, the boundary con-

dition for ¢, and ¢,
U+ iy = 23/12+222/4+ const.,

becoming Y+ iy =2%/124 2[4+ (2% —c?) [4+c*[4(Z+ ) +const.;
hence by the method of § 14, comparing with (14-13), we have

fl2) = e2j4,

F(z) = 23/12+ ¢2Z/4 +c*/4(Z +-¢),
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 207
so that from equations (14-14) and (14-15) we have at once
0, = ¢, +iY; = 1{z3/12+c2?[4+ 2[4+ ct[4(z+c)}, (18-6)
Wy = Pyt 1Yy = —23/12+4c2%[4—2z[4—ct[4(z+c), (18-7)

which give perfectly satisfactory solutions across the cross-section, since the point
z = —¢ falls outside the cross-section.
The canonical flexure functions y; and y, have to satisfy the boundary condition

D, . e -
o, i —2°[12—22%/4} = 0,

or since 9/0¢ = 3/d{+ /d¢, the boundary condition can be written

; —o\ AZ _dz
E(Xﬂ'%) = 1(22+2?) ZfZ-ngz}}'Z,
but Z%Zz: ZZ___CZ, Z%:zz_cz;

hence the boundary condition becomes

Pt = (427 (Bt 2+ 2(— )2

or 5 O i) = A ke(2= )2 + 42+
on making use of (18:5). But if y, +iy, is given by (14-19), then the boundary con-
dition is \
d . ., \dz ., dz
i) = @) ) R,

and so we may write

F (g = el =) 265G,
F'(2) ‘ffi — 234 +64/2(Z +6) — 3C,

where C is an arbitrary constant, and these lead to
f(z) = ¢z?/2—$Cc®log (2% —¢?),
F(z) = 23/124c?z[4—c*[4(z+c) + (C/]2—§) ¢ log(z-+¢) + (C/2+1) 3 log(z—c).

Now £, and 2, are given by (14:20) and (14:21), and x, and x;—Ay; have to be
physically admissible solutions, hence we find that in order that y, shall behave satis-
factorily at the point z = ¢, we must take C' = —4, and we have

Q, = o+ ixs = i{2°/12—cz?/4+ 2[4 —c*[4(z4c) — 3¢ log (2 +-¢)}; (18-8)
Ql‘z x +ixF = 2312+ c2?[4+c*z/4—c*[4(z+c) — i3 log(z+c) + ¢’ log(z—¢),  (18:9)
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208 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

of which the last term is unsuitable for our problem and we shall have to show that
the logarithmic term disappears from the combination y, — /y,.
Now consider ys, this must satisfy the boundary condition

iy (8 J 1,5 wgz d*
o = et~ g g
J L

or ?Xf = 16227 = ¢®>cosy

on making use of (18-5) and (18-2).

We now come to a very interesting point; at first sight it would appear that the
appropriate solution for y, must be ¢%¢ cos, since this is satisfactory at all points of
the cross-section including the focus z = ¢, as far as the displacements are concerned.
But we must remember that such a solution has also to be satisfactory as regards the
stresses, i.e. the derivatives of y; have to be satisfactory at all points of the cross-section
as well as y, itself. In the present case it is clear that if (18-9) is to stand, then x; must
possess a logarithmic term to make the combination y, —Ay; a physically admissible
solution, and its derivatives must be finite at all points across the cross-section, other-
wise we have non-admissible infinite stresses. Now if

d{d{ = J?dzdz = J*ds?,
we find J? = zzZ[c¢*e* or J = re%/c,

so that J becomes infinite at the focus z = ¢ inside the boundary £ = 0, since at this
point £ = —oo. But if (/, m, 0) are the direction cosines of the normal to a curve
¢ = const. at the point P (£, ), then

T )

£ ™oy
% . Ixs aXs)
o = 50+

Hence if the stresses are not to become infinite at the focus, the derivatives of y,, ex-
panded in the form X4, ¢% cosny as a sum of harmonic functions, cannot contain any
lower power of ¢¢ than ¢%. This forces us to reject the solution ¢2¢ cos 77, even though it
satisfies the boundary condition. If, however, we use the Fourier series for cos

cosy = (2/n) —(4]m) 3 (—1)" cos 2u/(4n2—1) (18-10)

valid for —7/2<y<n/2, then the appropriate solution for y; which satisfies the boundary
condition is

(—1)"e? cos2ny/2n(4n*—1), (18-11)
1

Xz = (26%[m) E— (4¢?[m)

%L
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of which the only non-admissible term is the first, which becomes infinite at the focus
z = ¢, and is the real part of (2¢2/m) { = (c?/m)log{(z?—¢?)/c?}. The critical terms in
the combination y, — Ay, are accordingly

R{(c%h/) log(22 —¢?) — (¢/4) log(2—c)},

which can give rise to no infinity at z =¢.if A = mc/4, and this is found to be so;
hence our solutions for y; and y; are entirely satisfactory.

We have Q= yyix¥ = (22/m) {42 % 4,6, (18-12)
n=1
where A, = (2/n) (—=1)"*1{1/(2n—1)+1/(2n+1) —1/n}, (18-13)
whence Qg = (2¢%/m) {{+ 2sinh { tan~! ¢ —log(1 4-¢%)},

dropping an irrelevant constant. The most useful form for our purpose is however
(18-12).
Finally we have to consider the torsion function. The boundary condition for ¥, is,
from (18-2),
Y3 = 2z/2+const. = ¢2cosy+const. along £ = 0,

and using (18:10) for cosy, this leads to
Yy = (462fm) 3 (—1)7*1 2 cos 2ny/ (42— 1),
n=1

which satisfies the boundary condition and is satisfactory at all points of the cross-
section with regard to the displacements and the stresses.

We have Wy = fotifhy = i S Be?, (18-14)
n=1
where B, = (2/m) (—1)"{1/(2n+1)—1/(2n—1)}, (18-15)
or wsy = 1(2¢%/m) 2cosh {tan~1¢* (dropping a constant),

but (18-14) is the more useful form. This completes the canonical flexure functions.

Comparison with previous solutions

These results disagree with the solution due to Young, Elderton and Pearson
(1918, p. 64) mentioned in the introductory § 1. Investigation shows that their value
of the flexure function ¢ in their equation (105) is unsuitable for the physical problem.
Their function ¢ (which is equivalent to a combination of Saint-Venant’s flexure
function and the associated torsion function) has been chosen to satisfy the boundary
conditions and make the displacement w finite at the focus. But, as we have seen,
this is not sufficient; we have also to ensure that the stresses are not infinite at the
focus. Their solution fails because their function ¢ contains a term 7c2e~*/2cos(f/2),
leading to stresses of order ¢*/2 at the focus, where in their notation « becomes infinite.

Vor. CCXXXVII. A. 27
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210 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

In our notation a = — 2§, and this incorrect term is precisely of the type ¢ cos 7 which
we have rejected in finding y; and ¢5.

Our result for the torsion function ¢, disagrees also with the solution for the corre-
sponding hydrodynamical problem of the motion of an inviscid liquid in a rotating
bowl whose cross-section is the lemniscate of Bernoulli, given by Basset (1884, p. 245).
He realized the need for care at the focus, but replaced cos 7 by the expansion

cosy = (m/4)— % (—1)*cos(2n+1)7/(2n-+1),
n=1
valid only for —n/2<p<m/2, i.e. excluding the limits 7 = +7/2, instead of using
equation (18-10). The result obtained in this way fails to secure continuity of Jd¢,/d¢

along the x-axis for 0<<x<Cc.

The torsion and flexure moment integrals

For this cross-section we find from (18-2) and (18-3) the results:

S=t h—mils, [ydS—c(ms—1),]

(18-16)
fo as' = c*(m|8+3%), jxy2 ds = mc®[64, |x3dS = 15mc5/64,
in calculating which the substitution cos# = sin?¢ will be found useful.
From (8-5), (18-14) and (18-15) we find
® w2 o)
M, =c¢t3 B, cosy cos2ny dy = (2¢4[m) > {1/(2n+1)2—1/(2n—1)%
n=1 -7/2 n=1
or My = —2c*/m,
so that from (7-4) and (18:16) we then have
My = c*(n?— 8) /47 — 0-1487784c*. (18:17)

Next we put Q,=0y+82,,, with L= L} + L}, to correspond,
where, from (18-8),
Qg = {2312 —c2?[44-c%z[4}, Q,, = —i{c*/4(z+¢) + (c*/2) log(z +-¢)}.
Then from (8-3) we find
Ly =— %f(x:* —3xy?) dS+dc| (x2—y?) dS— q;fx as
or Ly = —1Tme5/64+¢5/3,
using (18-16).
Again, from (8:8) we find

Ly, = R|ic?cosp{ct/4(z+¢)2—c32(z+¢)} dz,
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but since along the boundary { = 0, we have

1/(z+¢) = (z—c¢) e %[c?,  z = cet1(2cosy)t, zdz = cZidye?,

5
we find Ly, = —%{Q%Ig,ﬁ2“%,%+2%I%,%—%§},
I B nl(r+1) '
where? I —fo CcOs” 77 COS §7) q’;; = ) ) B (18-18)
27+1]“ 5 I“ 5

for 7 real and greater than —1. On using also

I'(n) I'(1 —n) = mcosec nm, (18-19)
this gives Ly = —c5(9m—32) /24,
and so L, = ¢5(5—31n/64).

Hence from (7-4) and (18-16)

Ly = ¢5(10—37) /6 = 0-0958703c5. (18-20)
Similarly we put

W) = 0y, + 0y, with M| = M},+Mj, to correspond,
where from (18-6),
0y, = 1{23/124c22[4+c%z[4}, w,, = c*[4(z+0).
Then from (8-4) we have
My, — ~;};f(x3——3xy2) a’S—-%cf(xz——yz) dS—?;fde

or M, = —(Tnjoa-+3),
on making use of (18-16), and from (8-7) we find
+ _ p|_[«Bcosy
M, = R{ f4(2+c)2dz}

cd (w2

—= (cos y+cos 3y) dy,
2Jo

or M, = 2%5—;{[%’%4—2]%’%
and on using (18-18) and (18:19) we have
M1y = c3(3m—8)/24;
hence M{ = S(m/64—2).
From (7-4) and (18:16) we have finally
M, = ¢5(3m—8)/12 = 0-1187315¢5. (18-21)
1 This result, originally due to Cauchy, is given in Watson (1914, p. 68). See also Whittaker and

Watson (1927, p. 263).
247-2
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212 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

The associated twist and the centre of flexure

The length a of the axis of symmetry of the lemniscate loop is ¢,/2; hence, on sub-
stituting for ¢ in terms of ¢ in (18-17), (18-20), and (18-21), we find from (11-13) and
(18-16)

7 = —(W'a/EIl') {0-0124467 -+ 0-02138777}. (18-22)

From (11-14) the abscissa of the centre of flexure is given by
foa = 0-5709569 -+ 0-01120360, (18-23)

and since %/a = 0-5553604, the load at G lies between the sharp edge of the cylinder
and the flexural centre. The associated torsion accordingly tends to bend the sharp
edge towards the direction in which the flexing force acts, a result of opposite sign to
that of Young, Elderton and Pearson, even when we take their method of specifying
the twist by the so-called ““total torsion” into account, for the anticlastic displacements
tend to enhance the visible effect of the twist as indicated by the relative displace-
ments of the ends of the axis of symmetry, and the ““total torsion’ of (12-2) is

— (W'a/EI") {0-0124467 -+ 0-07674817)}.

Note on the series expansion of the flexure functions

Young, Elderton and Pearson’s function ¢ was obtained as a series derived from
a Fourier expansion of the boundary condition, and they failed to realize the simple
character of the coefficients in their expansion. One set of their coefficients (1918,
p- 64) «, we can identify with the coefficients of the canonical flexure function y, in
series form as

Xo = —¢3 > k,e2"% sin 2ny,
n=1
/2 L. o0 . 30 .
where K, =—(2 /mr)f (2cos )% sin? 5sin 5-sin 2nd df,
0

and it is not difficult to obtain this explicitly, since

iy = —(242nm) {Ly 53— 1} 5,13~ T3 9p-3+ Ty, 0008}
and so from (18-18) we find

— 3 — 1
Ky =—3% Ko=73%

and k, = (—1)"275(n—1) (4n®>—5n+6) {(2n—4)!/(n+1)! n!} (18-24)

n

for n>>3.
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Young, Elderton and Pearson did not effect this integration but computed the
coeflicients for n = 1 to n = 7 by numerical integration ““after considerable labour”’.
We find for comparison the results in Table II below.
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TasLe II
n K, from (18-24) K, computed
1 —0-09375 —0-0937535
2 +0-03125 +0-0312530
3 —0-0058594 —0-0058622
4 +0-0024414 +0-0024437
5 —0-0013184 —0-0013204
6 +0-0008138 +0-0008155
7 —0-0005460 —0-0005482

Evidently the formula by means of which the integral was computed, due to Sheppard
(quoted by Pearson 1902, p. 276, case (i) (c)), the subject of integration being tabled
to every 5°, is here only reliable to four or five places of the seven figures tabulated.

19. ASYMMETRIC CROSS-SECTION; THE HALF-LOOP OF BERNOULLI’S LEMNISCATE

In this section we propose to illustrate the systematic treatment developed in this
paper by finding the solution for a completely asymmetric cross-section, namely, one
of the two halves of the loop of Bernoulli’s lemniscate into which it is divided by the
axis of symmetry. This would appear to be the first complete solution for an entirely
asymmetric cross-section.*® _

With the axis of x as the axis of symmetry of a cross-section of uni-axial symmetry,
the three functions ¢,, x; and x5 give the complete solution when the load is along
the axis of symmetry. The distribution of stresses will accordingly be symmetrical about
the axis of x, and 7z, will be odd in y, with 72, = 0 along the axis of symmetry y = 0.
Now consider an elastic cylinder which has for its cross-section one of the two halves
into which the axis of symmetry divides the original cross-section of uni-axial symmetry.
The boundary condition /¥z2+myz = 0, which gave rise to the boundary conditions
for the canonical flexure functions, reduces to 42 = 0 along the boundary y = 0. Hence
¥z, = 0 is the boundary condition for the half-section along the straight boundary
y = 0 corresponding to the stresses arising from the canonical flexure functions ¢,, ¥,
and ys;. It appears therefore that the functions ¥, x;, ¥; which satisfy the boundary
conditions round the boundary of the original uni-axial cross-section also satisfy the
corresponding boundary conditions all round the boundary of the half-section.

* Since this was written, Seth (19364) has published some results ““On Flexure of Beams of Tri-
angular Cross-section”, which include asymmetric cross-sections; these are, however, for the particular
case 7 = %, and in no case does he complete the solution by evaluating the associated twist, which
is a very necessary constant of the solution.
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214 A. CG. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

The boundary of the half-section obtained in this way from the loop of the lemnis-
cate of Bernoulli consists, from the analytical point of view, of the three portions

E=0, O<p<n/2,

7 =0, — 00 <£<C0 (the x-axis from the focus z = ¢ to the leading edge),
n=m/2, —oo<E<0 (the x-axis from the focus z = ¢ to the trailing edge),
(see fig. 7).

The canonical flexure functions

From the previous remarks we know that w,, £2, and £, are given by (18:7), (18-9)
and (18-12), and it is readily verified that these do in fact satisfy the conditions along
y = 0. We have now to find the three remaining canonical flexure functions v,, v,

_ and £,.
Ly / If we put W) = W1+ 0y,
/' where vy, = 123/3, (19-1)
n=%T S

;o then ¢, is a plane harmonic function satisfying

¥ = xy?+const.

/ 7L along the boundary, which becomes

/ =Y \ =0
/e N X 1, = const.

Fic. 7. Asymmetric cross-section along y = 0, i.e. along = 0, and = 7/2, and
bounded by the positive x-axis

and the portion of the lemniscate Y1z = ¢}f(y) +const. along £ =0,
of Bernoulli in the quadrant for
which x and y are positive. where S(n) = (2cosp)? cosg—sinzg

and vanishes for y = 0 and 5 = 7/2. Hence the boundary condition can be expanded
in a Fourier series odd in 7, leading to

(1)12 - 03 z Aﬂ €2n§, (19'2)
n=1

/2
where 4, = (4/71)J~ (2cos 6’)"}cosgsinngin 2n0do. (19-3)
0

The series (19-2) can be summed, but we find it much more convenient to retain the
series expression. ;
To find the torsion function we write

Wy = W3; W39, (19-4)
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 215

where w;, = iz2/2. Then ¢;, is a plane harmonic function satisfying the boundary
condition
V39 = Y2+ const.

which becomes V3, = const. along y = 0,
and ¥y = () +const. along & = 0,
where Sf(n) = 2cosysin?(y/2),

which vanishes for » = 0 and y = 7/2.
Again, the boundary condition can be expanded in a Fourier series odd in 7, leading
to

W3y = % Cye™, (19-5)
n=1
where 7C, = 2 f {2 cos — 1 —cos 20} sin 2n0 df
or 7C, = 2/n(4n*—1) — (1 +cos nm) [n(n?—1). (19-6)

Again the series (19-5) can be summed, but the series expression proves to be much
more useful.
Finally, ¥, is a plane harmonic function satisfying the boundary condition

)
9};{7@—!/3/3} = O)

Ixs

which become§ = 0 along y =0,

and %—Xg = ¢*f(y) along { =0,

where S(n) = (2cosp)? sin2gsin3—277 .

Accordingly we write 2, = y,+ix¥ = 63{B0§ —{—éaneM , (19-7)

and the boundary conditions will be satisfied if

/2
B, = (2/mr)f (2 cos 6)%sin2»gsin%€cos 2nfdf, n=1,2,3,... (19-8)
0
w2
and B, = (2/n) f (2cos 0)%sin2gsin%ﬁdﬁ.
0

Using the substitution cos§ = tan2?¢, B is readily found to be

B, = (2/m) {Flog(1+./2) —/2/6}. (19-9)
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216 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

It is clear that this result contains one term, namely ¢*B,{, which makes y, become
infinite at the focus z = ¢. But y, always occurs in the combination y,—#ky;, and the
critical term in this combination we find from (18:12) to be ¢*{cB,—k(2/m)}{, which
vanishes if

k= c{}log(1+./2)—./2/6}. (19-10)
This is indeed found to be the case; hence the solution (19-7) satisfies all require-

ments.

The torsion and flexure moment integrals

We have the additional results for this cross-section:
S— 22, h—mcd, fodS — 4(n/161 1) f §2dS = cH(n/16—

fxde — 12, fxyzds — 763128, fxs dS — 15mc5/128,

L (1911)
fx2de — 5(61 /2/960 — & log(1+./2)},

f Y3 dS — ¢5{49,/2/320 — 13 log(1 +/2)}.

In finding these results the substitutions cos f = sin? @ or tan?¢ will be found useful;
some of the results are immediately deducible from the corresponding results of § 18.

For an asymmetric cross-section we have to calculate six moment integrals. Con-
sider first the torsion moment for the cross-section. Writing M; = M3, + M,, we have
from (19-4), using (8-4) and (19-11),

M, _f 2) dS — —¢[3,
and from (8-5)

M, = ¢ f Cos77( ‘532)g et f 10(1 %) (%z)ﬂ:od&%cz f ;m(l )(8552)7 2

4 o
whence M3, :—c > C{ o

nl

1 1+cosn71}
2n-1 n+1 )

Hence substituting from (19-6) for C,, splitting the term of the summation into partial
fractions, we have after some reduction using the digamma and trigamma functions,
given by (15-25), (15-26) and (15-29),

My = (Hm) Gy (@) +v () +y (@) — ¥ @) - @)+ (3) —2),
or using (15-31), (15-32) and (15-33)
M3, = (c¢t/m) {n?/8 —m[3+{ —2%log 2},
whence Mg = (c¢*fm){n?|8 —2m[3 4§ —2log 2}.
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 217

Hence from (7-4) and (19-11)
My = (c*/m) {m?/4—2m[3 44—} log, 2} = 0-0246927c". (19-12)
We next calculate L, writing from (18-9),
Q) =0, +02,,+2,3, with L] = L{;+L{,+ L{; to correspond,
where Q,, = 23[12+cz%[4+?z[4,
@y = —a(z-+0) — (6/4) log(z-+0),
215 — (¢3]4) log(z—0).

We may omit 2,, and L{,, since y,5 disappears from the combination y, — fys, provided
we omit also the annulling term in x5 when calculating L;. Using (8-3) we obtain

2
L, - %f(y3~—3x2y) ds—cfxyd ~i—fya’S
or Lj, = ¢*{11,/2/960 — 5 — gz log(1 +./2)},

on making use of (19-11). From (8-8) we find

;o V20 x2 ct c3 l /22 dz 4 c3
N e L MV P e |
5
The first integral gives us %{1 +.J/2—3log(1+4./2)},

and since along £ = 0 we have
1/(z+4c¢) = (z—c) e [c?,  z = c¥1(2cosn)}, zdz = ic2e*ndy,

the second integral reduces to

28¢5
<5 Vit 228

where Iy s =fﬂ/2(cos )" sin sy dy, (19-13)
and we have the particular values 0
Jio=% =5 (19-14)
Jy =274 /2—log(1+/2)}, (19-15)
Jy3=27H5,/2/3 log(1+/2)}, (19-16)

using the substitution cosy = x for J, ,, and the substitution cosy = tan?¢ for the
other integrals. Hence the value of the second integral is

B5{542/12 4 —log(1+/2)}.
Hence L, = ¢5{13,/2/24 — &% — % log(1+./2)},
and then L; = ¢3{531,/2/960 — 55— %Zlog(1+,/2)}.

Vor. CCXXXVIL A, .8
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218 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

Finally from (7-4) and (19-11) we find

— (3{87,/2/60— 5 — 3log (1 +./2)} = —0-0805984¢5. (19-17)
In similar fashlon, to calculate M,, we write, from (18-7),

Wy = Wy, + 0y, With My = M, 4 M;, to correspond, (19-18)
where Wy = —23[12+¢2%[4— 2[4, Wy, = —ct[4(zc). (19-19)

Using (8-4) we obtain
2
My, =4[5 33%) dS e[y dS+ [y,
or My, = — 4% +11,/2/960 — g log (1 +./2)},
on making use of (19-11). From (8:7) we find

L ctpvae x2 deiR /26 dz p
Mg, = 4J0 (xto)? % -+ f cos;;{d”/(z+)}é:0 .

The first integral gives Zj{l —log(1-./2)},
and the second integral reduces to

{271y, +278 Ty — Sy 1)

and since it is readily shown that J, , =}, we find from (19-14) and (19-16) that
the value of the second integral is

{7224 —% - Llog(1 1-/2)},
so that M22 = ¢M1/2/24 % — ¢ log(1+./2)}.
Hence = ¢5{269,/2/960— & — &5 log(1+./2)},
and so finally from (7-4) and (19-11), we have
— ¢5(18./2/30 — L —}log(1+/2)} = 0-0054724¢5. (19-20)

Next consider LS; and write

0, = Q4+ Q245+ 245, with Ly = L3, -1 Ly, 1+ Li; to correspond,
where from (18-12),

g @3 A0, Q- (Ef)log(z o),y = () log(z—a).

We can omit £2,, and L, as explained when considering Z,. Using (8:6) we find

/2 0 d - J

0

, ¢t 1 1 1+cosn71}
or L31““Ez‘,zl‘q"{"zn—l“2n+1“L ntl |
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Substituting for 4, from (18-13) and resolving into partial fractions, we express the
result in terms of the digamma function and the allied function #(z) defined by (Adams

1922, p. 133)

R L C R
which satisfies the relations
f(1+z2) =1/z--f(2), p(1—2z) = mcosecnz—f(z). (19-22)

Hence we obtain
Ly = (2c4/m) 3+34'(3) +4£(2) —36(1) +38(3) — 3V (3) — ¥ (D)},
or using the particular values
p1) =log2, f3) =2, (19-23)
and (15-31) Ljy = (2¢m) |2+ §log 2+ 44 () —4]-

From the definition of f(z), the value of §’(z) may be calculated from the tabulated
trigamma functions, but if here we write

6=~ - 3 A2k

this has been calculated by Glaisher (1877, p. 203) to twenty places of decimals as
G = 0-91596 55941 77219 01505,

which is more than sufficient for our purpose.
From (8:8) we have

L, = (ﬂ/ﬁ)UZ (x+c a’x+Rf ¢? cos yl:%/(z%—c):'gzodiy}
| — (64f2m) {1 - J2+log(1+/2)} — (¢4/2m) 24T, ,,
and so, using (19-15), Ljy = (A7) {4 —/2+1og(1-+./2)}.
Hence, collecting our results, we have from (7-4)
Ly = (c*m) {} —-2G—J2+7/3+%1log 2+log(1+./2)}
or , Ly = —0-0721643¢*. (19-24)
Next we consider M, ; from (19-1) and (19-2) we have
My = Mi,+My,,

where from (8-4) and (19-11) we have

M, = — f (% — Bxy?) dS = — 376532,

28-2
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220 A. C. STEVENSON ON FLEXUREVWITH SHEAR AND TORSION

and from (8-7) we find, proceeding as for M;, and Lj,,

, 1 1+ cosnm
_ 5
My = —3¢ ZA {Qn 1 2n+1+ n+1 J°

Using the integral form for 4, of (19-3), and summmg the series under the sign of the
integration, we have

M, = (¢ /7;)]7r (2 cos 0)%cosg—sin2~g—f(5) do,

‘o 1 1 1-}cosnm
— 2in0 —
where J0) =R Z 210 {2n~ 1 2n+1" ntl }
2i0
=R— { 2i+2sin 0log — - f~-—~ 2ie~ %" log 1— s Zzzo}

. 0 .
= 2sin{ log tan;,—2sin 20log tan 0 —m cos 20,
so that we can separate M, into the two integrals M,,, M{,,, where

/2 g . .0
My = —c5f (2cos0)? cos;sin’ 7 cos 20 df
0

= 278Ny y Dy — g y— 1y g} = 7°[128,
using the notation and results of (18-18), and

My, = (26%)m)

To evaluate this we first put cos = tan?¢, whence

/2
(2 cos 8)% cos -gsin2g {sin 0log tangm sin 20 log tan 6} dn.

0 2

2logtan(0/2) = logcos 2¢, 2logtand = logcos2¢—4logsind,

and putting tan ¢ = ¢, sec ¢ = s for brevity, we have
m/4
Mipy = (26/m) [ =1, ] ",

where 1, = sztﬁ(l—t“) log sin ¢ d¢,
I,— f st (1 —#4) (262 1) log cos 2¢ d.

Now since nfstn d¢ — gl (n__ 1)fstn~2 dgﬁ,

we deduce, for n even,

n 1 n—1 (n—‘l) n—3 (nhﬂl) (n*‘3> n—
f“ dp = st =y =gy )

'i"( )ist—log(s+0)}.  (19:25)
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Integrating I, by parts, taking log cos 2¢ as one member, using (19-25) with different
values of n as required, we have with a little further reduction of the integral portion
remaining

I, = {355t — 55 st3— 2555+ 75517 — L 51%) log cos 2 + 4 fsec¢logsec2¢d¢

+f{%st,8~§stﬁ st 1352 —4£%51+-43 }d¢

1—
Now, since f s dg = 2-1{log(1-+ 2} sin ) —log(1 — 24 sin §)}
and log cos 2¢ = log(1+ 2¥sin ¢) +log(1—2¢sin @),

then, using (19-25) we find
I, = {§5st— P53 — 555+ 5587 — 1 s1°+ 55 /2  log (1 +./2sin ¢) + 4 fsec¢logsec 24 d¢
+ {35 st — 5513 — By st 4 5y stT — L5t — 22 /2} log (1 — /2 sin @)

— 1o 108 (s 1) — 55t + 37558 — &5 58 + 1o 517,

/4
whence [12] = §2K — 55 log(1+./2) + {5 v/21log 2—%./2,
0

m/4
where K :f sec ¢ log sec 2¢ dp.
0

Proceeding in the same elementary fashion with /;, we have
I = {— 4504 P st7 + 1551 — 1L s34+ LT st — L log(s+-¢)} log sin ¢

+ st — st + 2L 53 — 135t — 181 log (s + 1) + 315 |4~ log(s+-¢) d,

whence
(2] = 33K+ 4 log 2log(1 +2) ~ 1gblog(L+/2) —§33/2log 2— .2,

where K’ =f cot ¢ log(sec ¢ +-tan ¢) dg.
0
Hence we have finally

My, = (¢°[m) {F§ K' — 53 K+3Flog 21og(1+/2) +4 log(14/2) — {85 /2 10g 2+45./2}

Collecting up the results to give M/, and then using (7-4) and (19-11) to give M,, we
find

M, = (¢*[m) {%%K’~%K+%—210g210g (1+2) +4log(1+2)

2
383 /2]0g 2 J2+%}. (19-26)
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222 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

To find the numerical value of M|, we have to compute the values of K and K'. This
will be carried out after we have calculated the corresponding formula for L,, the
remaining moment integral, which will be found to depend on the values of K and

K’ also.
From (19-7), we write

Q= Qo+ Q9+ 24y, with L) = Ly 4 Ly + L3 to correspond,
where Qy = % B, e,
n=1
and Q55 = (¢*By[2) log(z-+c) = (cBy7[2) 255,

Q95 = (¢*By/2) log(z—¢).

We omit £,; and Lj,, since we omit a term in x; in obtaining L; which annuls Lj; in
the combination L,—kL;. We have

Ly, — (eBym/2) Ly, — & Byfy —y2-+log(14-/2)}

or Ly, = (8/m) {3 — /24 (1 —§4/2) log(1 +/2) +4[log(1 +2) 1%},

using (19-9).
Again using (8-8) we have

' 9 21 1,2 e28) | 2421 1.2 __p28) [ 2421
L, _cf cos;y( o )g_0d77+2cf (1+e )( P ), Od§+2c fﬂ (1—e )( i), dt,

=7/2
G Q_Hl_ 1 1 1
ot LZ‘ﬁ_'QM,ElnBl w1 2n n +1+( )" [n n+1 }
w2
= () [ (2 cost)? sin2? sin%) /10) do,
0

using (19-8), and writing

2 1 1
Y7} N N R
f(ﬁ) RZ e {2n+1+2n—1 n n+1+( )l:n n-+1 }

i0
1 + —2cosflog 11L~ew}

= R{(l + %) 1og

. 0
= gsm 20 -2 cos 0 log tang —2 cos?flogtand.
Hence we can write Ly, = Ly, -+ Lj,,, where

m/2 L. .0 . 380 .
Ly, = (05/2)f (2 cos 0)fsm2§ sm—é—sm 20db
0

= 27Ty~ Dy Ly — 1y ) = 3128,
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 223

using the notation and results of (18-18), and
, /2 . .0 . 30 0
Ly, = (05/17)f (2cosf)? s1n2§51n—2— {2 cosflog tan g2 cos?flog tan ﬁ} dag.
0
With the substitution cos f = tan? ¢, this becomes
, /4
L= (&m) | 1=
where Jy = |4s(#5 48 —2£19) log sin ¢ dg,
gy :fs( — 4+ 38— 2¢19) log cos 2¢ dg.

Proceeding as with /; and I, we find

={—tsO+ st — {550+ §s63— 125t +43 /2  log (1 — /25in )
F{— L0+ Fst’ — o5t + 5563 — 135t — 42 /2 log(1+./25sin @)

+ gyt — 235854 18T 53— 2915t 883 og(s+ 1) ———fsecgzilogsec 24 dip

/4
or [JZ:IO = $82]log(1+4./2) — 13K 43, /2log 2— 1437 /2

and  J| = {— £ 4 TstT — 285801 29513 — 285t - 2% log(s - ¢) } log sin ¢

+ g s — Sy st - L8353 128 5y - 1849 log (s 4-t) — 22|t log(s+ 1) d

/4
(/] = % log(14-v2) +483 /2 log 2— 34 K'— 34 log 21og (1 +,2) — 142

0

Collecting up the results we have
Ly = (/) (1§ K34 K'—§log(1+/2) ~3$ log 2log(1+./2)
2
Z§%J210g2+240~/2+ }

Hence we find L) and then using (7-4) and (19-11) we have

7 8J2

L, = (c/m) {%K—%%K' log(14/2) — 2% log 2log (1 +./2)

2 ,
+%+§1%J2+%J210g2+%[10g(1+J2)]2+g;}. (19-27)
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224 A. G. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

Numerical values of K and K’

With the substitution sin ¢ = x, we have

al Iv
K :f cot ¢ log(sec ¢+ tan ¢) dg fl L gi+xd
. —

=f:/vz{,§02ﬁl}dx - JL % (2n—|— 1y2°

which is readily computed, and we find

/4 )
K’ =f cot ¢ log(sec ¢+tan ¢) dgp = 0-75609968. (19-28)
0

The same substitution gives

ml4 1/v/ D2
K=f sec¢1ogsec2¢d¢:—f *logl—27) ),
0 0 1—x

_log(1—2x%) 2

If 2n
we put T E a,x
o 0 2n
then S a,(x2—x2+2) = —log(1 —2x2) = Y 2" 2 X"
n=1 n=1
L 2 22 923 on
which gives a”—T+_2“+§+"'+"n;’
h K 3 vz 2n ] < a,
whence —nglanfo x*dx —rgl (Znr1) 2

This, however, is not sufficiently rapidly convergent for purposes of computation, but
since it is a series of positive terms we can certainly rearrange it as

=] 1 100
K_J2{,,§n(2n—|—1)+§ﬂ§1n(2n+3) nzln(2n+5)+ }
@ 1 1 a1 1
Now ,Zln(2n+2m~1) - 2m-1n§0{n+1_«n+m+%}

=5 W) 4}

using the digamma function again, y being Euler’s constant (see (15-25)), whence

K=23 ooy inr)+7)

m=1

from which K has been computed, and we find

ml4
K= f sec ¢ log sec 23 dp = 0-68856036. (19-29)
0


http://rsta.royalsocietypublishing.org/

%

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

yA \

I—
p N

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

IN PRISMS OF UNI-AXTAL AND ASYMMETRIC CROSS-SECTION 225

With these values of K and K’, equations (19-26) and (19-27) lead to the numerical
values of M, and L, as

M, = 0-0201000¢%, L, = — 0-0019833¢5. (19-30)

The assoctated twists and the centre of flexure

From the results of (19-11), with the notation of § 9, we find from (9-12) and (9-16)
the numerical results
A = 0-00867357¢*, B = 0'0545910664,]

: (19-31)
H = 0-00283615¢%, C = 0-04626652¢%,
whence from (9-13) and (9-14)
I = 0-05476557c, o = 3°-5205638,)
: (19-32)
I’ = 0-00849906¢4, J
and from (9-17) we find
ay = 9-3172895, b, — 58642602, h, = 3-0466362. (19-33)

Using these numerical results and those for the six moment integrals from (19-12),
(19-17), (19-20), (19-24) and (19-30), also using the length a of the straight boundary
instead of ¢, where a = ¢,/2, we have from (7-7) and (7-8)

T= (Wa/EI){0-1707208+0-18122187}, (19-34)
7' = — (W'a/EI") {0-0204721 -+ 0-04138807}. (19-35)
Also from (9-5) and (9-6) we find the co-ordinates ( f;, g,) of the centre of flexure as
f,Ja = 0-5826902 -+ 0-03017700, (19-36)
go/a = 01851923+ 0 00422820. (19-37)

The values of the co-ordinates of the centroid in terms of ¢ are

hja = 0-5553604,  kja = 0-1449459 (19-38)
for comparison.
Whatever the load-point and direction of the load, the general twist of the cross-
section can be visualized from the relative position of the load-point and the centre of
flexure.

20. COMPARISON OF RESULTS

In this concluding section we group together certain of the results from previous
sections for a comparison of the twisting effect of the load in the various cases. The
sense of the mean twist is known at once from the sign of the moment of the load about
the centre of flexure. Young, Elderton and Pearson envisaged the problem in the
classical manner with the load at the centroid of the section and considered the twist

Vor. CCXXXVII. A. 29
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226 A. G. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

as given by the sign of their ““total torsion” so-called, as defined in § 13. They were
rather disturbed to find results of oppositesign for the quadrantal circular sector and the
lemniscate loop, and were not sure this could becorrect as they knew of no othersections
exhibiting what they termed ‘““negative torsion”. Consider fig. 8, which represents
(a) the semi-circular cross-section, (4) the right-angled isosceles triangular cross-section,
(¢) the quadrantal circular sector cross-section, and (d) the lemniscate loop cross-
section, so that we have a progression from (a) where the axis of symmetry is the
shortest dimension to () where it is the longest dimension, the cross-sections all having
the same axes of symmetry. For these cross-sections the quantity (A—f,)/a, which
is proportional to the associated twist 77, takes the values

(a)  {0-084845+0-0089720} >0 for all values of o,
(6)  {0-066666-+0-0087170} >0 for all values of o,
(¢)  {0-002572—0-0002320} >0 for all values of g,
(d) —{0-015597+0-0112040} <0 for all values of 7,

so that for the associated twist 7" we do have a change of sign as between the cross-
sections (¢) and (d). Using Young, Elderton and Pearson’s “total torsion”, these
are proportional to the quantities

(@)  {0-224047+0-1721417} >0 for all possible values of 7,
(6)  {0-212941—0-138823y} >0 for all possible values of 7,
(¢)  {0-004458 —0-0961557} <0 for 7>>0-0464,
(d) —{0-012447-0-0767487} <0 for all values of .

Here the change of sign occurs, for practical values of 7, as between the cross-sections
(b) and (c¢), and not between (¢) and (d) as Young, Elderton and Pearson incor-
rectly found. There is no anomaly in a change of sign for this quantity for cross-sections
not markedly different in character, as they were inclined to suggest; it simply indicates
a passage of the centre of flexure through the centroid, as the uni-axial cross-sections
change their shape in the manner of the series of cross-sections illustrated.

Compare also the positions of the centres of flexure of the cross-sections grouped
together in fig. 9. Of these, the uni-axial cross-sections () and (¢) are right-angled
isosceles triangles, (b) is a 45° circular sector, also a uni-axial section, and (d) is the
asymmetric cross-section considered in § 19, the half'loop of the lemniscate of Bernoulli.

The co-ordinates of the flexural centres in these cases are given by

(@) fyla= 07 +0-0040, goJa =03 —0-004c,
(b) fy/a = 0-645+0-0260, goJa = 0-267+0-011c,
(¢) Jola= 05, gola =02 +0:0040,
(d) fola = 0-583+0-0300, Zo/a = 0185+ 0-0040,
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IN PRISMS OF UNI-AXIAL AND ASYMMETRIC CROSS-SECTION 227

whereas the co-ordinates of the centroids are given by
(@) hla= 0667,  kla—= 0333,
(b) hja = 0-600,  kja = 0-249,
(¢) hla = 05, kla = 0-167,
(d) hla = 0555,  kla=0-145.

In these compact sections the centroid and centre of flexure are not far apart, so
that, for such sections, the usual engineering practice of taking them as coincident
involves a relatively small error. But for less compact sections, as, for example, the
circular section with sectorial notch (see § 15, Table I, columns 6 and 7), their distance
apart increases, being a maximum in this particular case when the notch reduces to
a radial slit. For non-closed thin-walled sections it is well known from elementary
approximate theory (Timoshenko 1931, p. 195) that these points may be well out-

side the section and on opposite sides of it.

y (&)
(b
)
d)
_______ a---——> NY (a)
ls) X
(b)
©
{d)
0% ———-a-—-——> “z
Fic. 8 Fic. 9

Fic. 8. Cross-sections contained within the semi-circle, to illustrate discussion of the passage
of the centre of flexure through the centroid of the cross-section as the type of cross-section
changes.

Fic. 9. Cross-sections contained within right-angled isosceles triangle, to illustrate discussion
of change of position of the centre of flexure as the type of cross-section changes.

21. CONCLUDING REMARKS

Young, Elderton and Pearson’s work on the circular section with complete
radial slit, and the split tube, and of Shepherd on the circular section with radial
slit of any depth, and the cardioid section give us an idea of the effects of longitudinal

cracks or slits on the twisting of a beam under flexure. Until quite recently we had no
’ 29-2
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228 A. C. STEVENSON ON FLEXURE WITH SHEAR AND TORSION

corresponding information of the effect of holes and notches. The writer has considered
several problems of this type with the aid of the canonical flexure functions and hopes
to publish further results in due course. One of these problems, that of the circular
beam with an eccentric circular cylindrical hollow, suggested by Love (1906, p. 325),
as a soluble problem, and again by Young, Elderton and Pearson (1918, p. 69),
has been solved by Saint-Venant’s classical flexure functions and published by Seth
(1936 b, 1937) who gives some numerical results for the amount of twist produced in the
case where the load is at right angles to the line of centres and for the value of stress at
different points of the section. This is a valuable cross-section and some information as
to the position of the centre of flexure for a range of sizes of cavity and position of the
cavity seems desirable. The writer hopes to compare his solution with Seth’s later.
The torsion function for the problem was first discovered by Macdonald (1893).
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